Multiple View Generation for Auto-stereoscopic Displays

Stephan Beck, Mathias Schneider, Bernd Fröhlich

Virtual Reality Systems Group Fakultät Medien, Bauhaus-Universität Weimar

September 27, 2010

Bauhaus-Universität Weimar

Overview

- Auto-stereoscopic Displays
- Motivation
- 3 Contribution 1: Layered Rendering
- 4 Contribution 2: 3D-Image Warping
- **5** Contribution 3: Hole Filling
- 6 Conclusions
- Future Work

Auto-stereoscopic Displays

dual perspecitive auto-stereoscopic display: fixed user position or head tracking

Multi-View Auto-stereoscopic Displays

e.g. 8 perspectives interleaved on sub-pixel basis

Multiple View Generation

1 graphics card -> basic approach: multiple passes

Challenge

multi-pass rendering: 8 passes

Recent Graphics Card Features

graphics pipeline with unified-shader model *

geometry shader:

- modify whole primitives
- duplicate primitives
- route into layer of texture array
- ...

 $igspace{}{}_{ ext{processing units are assigned where needed -> load balancing}}$

Layered Rendering

-> multiple views in single pass

Layered Rendering

layered rendering for multiple view generation: 1 pass

[FdSB08] : Painter's Algorithm

[Mar09] : texture arrays

Test Configurations

- 1.2 M triangles
- rendering resolution 1920×1080
- Intel Core i7 CPU 940 2.93GHz and Nvidia GeForce GTX 480

Layered Rendering: Results

Auto-stereoscopic Displays: Characteristic

Idea: 3D-Image Warping

3D-Image Warping

3D-rendering

3D-Image Warping

3D-rendering

3D-image warping re-projection warping into new perspective/

3D-Image Warping: Standard Approach

gpu-accelerated warping of a reference view

-> warping one view into a new perspective

3D-Image Warping: Standard Approach

warping reference view 1+8 into perspective 2: two passes

-> warping 1+8 into the same target perspective

3D-Image Warping: Geometry Shader Approach

warping reference view 1+8 into perspective 2: two passes

warping reference view 1+8 into perspective 2: one pass

3D-Image Warping: Geometry Shader Approach

warping reference view 1+8 into perspective 2: one pass

warping reference view 1+8 into perspective 2: one pass + reduced proxy geometry

3D-Image Warping: Geometry Shader Approach

layered rendering + multi-pass warping: 1 + 6 passes

3D-Image Warping: Geometry Shader Results

3D-Image Warping introduces Artifacts

Idea: Hole filling

- off axis stereo:
 - -> horizontal correspondance
 - horizontal hole filling extend background

3D-Image Warping: Hole Filling Principle

1. warp adjacent pixels p + c + n in geometry shader

3D-Image Warping: Hole Filling Principle II

- 1. warp adjacent pixels p + c + n in geometry shader
- 2. if gap (hole) is above threshold
 - -> extend a LINE from c along d to v

3D-Image Warping: Hole Filling Results

hole filling

correct result

3D-Image Warping: Hole Filling Results

- layered rendering up to 40% faster compared to multi-pass rendering
- 3D-image warping benefits from geometry-shader integration: up to 50% faster compared to single-view warping
- reducing proxy-geometry resolution up to 50% faster (1:4)
- hole filling at low cost with promising results

- layered rendering up to 40% faster compared to multi-pass rendering
- 3D-image warping benefits from geometry-shader integration: up to 50% faster compared to single-view warping
- reducing proxy-geometry resolution up to 50% faster (1:4)
- hole filling at low cost with promising results

- layered rendering up to 40% faster compared to multi-pass rendering
- 3D-image warping benefits from geometry-shader integration: up to 50% faster compared to single-view warping
- reducing proxy-geometry resolution up to 50% faster (1:4)
- hole filling at low cost with promising results

- layered rendering up to 40% faster compared to multi-pass rendering
- 3D-image warping benefits from geometry-shader integration: up to 50% faster compared to single-view warping
- reducing proxy-geometry resolution up to 50% faster (1:4)
- hole filling at low cost with promising results

Future Work

ullet layered rendering + layered warping: 1+1 passes

improved hole filling

References

- Mar09 Jonathan Marbach: *Gpu acceleration of stereoscopic and multi-view rendering for virtual reality applications*, In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pages 103 110, ACM, 2009
- FdSB08 Vincent Nozick Francois de Sorbier and Venceslas Biri: Gpu rendering for autostereoscopic displays, In 4th International Symposium on 3D Data Processing, Visualization and Transmission, ACM, June 2008

Thank you!

Questions?