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ABSTRACT

Access control is an important aspect of shared virtual environments.
Resource access may not only depend on prior authorization, but also
on context of usage such as distance or position in the scene graph
hierarchy. In virtual worlds that allow user-created content, partici-
pants must be able to define and exchange access rights to control
the usage of their creations. Using object capabilities, fine-grained
access control can be exerted on the object level. We describe our ex-
periences in the application of the object-capability model for access
control to object-manipulation tasks common to collaborative virtual
environments. We also report on a prototype implementation of an
object-capability safe virtual environment that allows anonymous,
dynamic exchange of access rights between users, scene elements,
and autonomous actors.
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1 INTRODUCTION

The rise of a new category of virtual environments could be observed
in recent years: virtual worlds that allow thousands of users to
interact and shape their surroundings. The premier example of this
kind of virtual world is Second Life (http://www.secondlife.com).
In Second Life, a number of tools can be used to add virtual objects
to the world. Using a scripting language, users can program their
objects to let them interact with other users or objects. It is possible
to create houses, vehicles, clothes, and even autonomous actors.
Because the objects of such a programming environment are not
centrally controlled but belong to many different users with diverse
agendas, safety and security play an important role. Programmers
have to be able to define ways in which their creations may interact
with other parties without exhibiting vulnerabilities. The common
way to achieve this is to use access control lists (ACL), which
have a number of shortcomings. To use resources restricted by
ACLs, requesting programs have to have an identity, which is usually
assigned by a central authority. This can become a performance
problem as well as a scalability bottleneck. In addition, ACLs do
not support the delegation of access rights, which is an important
aspect of cooperative work.

In real life, although the use of ID cards is becoming more com-
mon, most doors are opened using keys. They provide access to
specific objects (e. g. a car, a room). Handing keys to other people
is a natural way of delegating access rights. This is the basic idea
behind object-capability security. A capability is an unforgeable
reference to an object that can be used to interact with that object in
a specific way. Just like keys, capabilities can be communicated to
other parties. There are a number of established software patterns
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Figure 1: Screenshot of a prototype virtual environment using object-capability
security.

that allow for dynamic assignment and revokation of fine-grained
access rights in an anonymous way.

We created a prototype virtual environment using the capability-
secure programming language E (cf. figure 1). In our system,
capabilities define how actors can be accessed and manipulated
(e. g. how they can be moved or how to change their appearance).
Capabilities can be attached to the visual representation of their
actors to make them publicly available and they can be exchanged
using a drag and drop mechanism. Using the method of rights
amplification [1], capabilities can be given to groups of users. By
exchanging capabilities through a collision detection mechanism or
a common parent in the scene graph, access can be made dependent
on spatial properties such as distance and containment.

Object capabilities allow the participants of virtual worlds to
define and exchange access rights in an anonymous and decentral
way. This can be very useful in the creation of scalable and flexible
virtual worlds that act as platforms for tasks such as simulation,
entertainment, or commerce.

2 RELATED WORK
2.1 Access Control Lists

Access control lists are attached to restricted resources and describe
who is allowed to affect that resource in what ways. Usually, each
row of an ACL contains an identity and an operation that can be
executed on the resource with that identity. To execute an operation
on a resource protected by an ACL, the requesting program has to
authenticate itself to the ACL, which then determines if the opera-
tion is allowed. This approach to access control has a number of
problems.

To access a resource restricted by an ACL, the requesting program
has to authenticate itself. Authentication usually requires a central
authority such as a login server, which can turn into a performance
bottleneck and require a large amount of administrative work. Also,
users may be unwilling to expose their identity for some operations.
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In ACL systems, authority dependents on identity. A program
using its own identity and authority to perform an action on behalf of
another program can be tricked into using its authority for unintended
actions. This transfer of authority is known as the Confused Deputy
Problem [2].

When using ACLs, the identity of the user determines the oper-
ations that he may execute on the restricted resource. But not all
actors in a virtual world are necessarily human and have an identity
of their own. User-created objects either have to establish an identity
of their own or act with the identity (and the full authority) of their
creator, which is a security risk.

ACLs do not allow the delegation of access rights, which is an
important aspect of cooperative work that should be supported. If a
user has the right to move an object, he should be able to delegate that
right to a tool in his hand, even if that tool belongs to another user. In
ACL systems, it is possible to circumvent this restriction by creating
proxies. This can become more of a security risk than explicitly
allowing delegation, because a badly constructed proxy could be
tricked into executing arbitrary commands under the authority of its
creator.

Finally, it can be argued that ACLs are not a suitable metaphor
for assigning access rights in a virtual world. Users have no way to
dynamically react to changes on their access rights and restricted
operations can only be executed by trial and error.

2.2 Second Life

Second Life (http://www.secondlife.com) is an Internet-based vir-
tual world with the goal of enabling communication, interaction,
and trade in a shared, user-controlled environment. All contents
in Second Life are created by its users. The client software offers
tools that can be used to create buildings or landscapes, build cars
and other vehicles, or change the look and appearance of the user’s
avatar. Virtual objects can be programmed to react to outside events
by using a scripting language. Scripted objects are able to commu-
nicate with their surroundings, change their appearance, or interact
with servers outside of the Second Life environment using network
protocols such as HTTP.

Access to user-created objects is restricted by ACLs, similar to
UNIX file permissions. The rights to modify, move, or copy can
be assigned to groups or all users. Scripts can request a number of
specific permissions from users during their run time, for instance
permission to control the point of view of the client. Furthermore,
rules of interaction are encoded in the semantics of the builtin script-
ing language, which provides certain operations but does not support
others, thereby shaping the style in which interactions and commu-
nication are possible.

Users of Second Life are not able to define custom permissions.
The predefined permissions are limited in their flexibility. Some
of them seem to be tailored for specific purposes, for instance for
letting objects act as vehicles. Storage of permissions in a central
database causes severe performance problems.

2.3 Den

The text-based distributed multi-user dungeon Den (http://
homepage.mac.com/kpreid/elang/den.html) is a peer-to-peer
system with the goal of supporting mutual suspicion between parts
of its world. The Den project has made many interesting contribu-
tions on the subject of access control in virtual worlds; unfortunately
it is largely undocumented. Den is written in the E language and
makes extensive use of E’s security features. Den’s world model
is room-based. Users can move from room to room and interact
with the contents by using text commands. Rooms can be connected
using entrances and exits. To set up an exit, access to the entrance of
the room it should lead to is required. Users are only able to leave
the current room if they have access to an exit. This access can be
restricted by a door. To open a locked door, a key is needed, which is

a normal object of the virtual environment. Doors support multiple
keys as well as individual revocation of keys. Rooms residing on
different servers can be connected over the network. This allows
users to move from room to room and thus from server to server.

2.4 Spatial Model of Interaction

The spatial model of interaction uses the properties of space and
distance as the basis for mediating interaction [3]. Each virtual object
is enclosed by a bounding volume called aura. Only objects whose
auras collide are able to interact. Objects can adjust the amount of
awareness information they offer and receive dependent on distance.
Each object has two more bounding volumes, nimbus and focus.
The amount of awareness information that an object receives from
other objects is dependent on the size of the sender’s nimbus and
the receiver’s focus. Awareness information is exchanged only
if the two collide. Focus and nimbus can adjust the amount of
awareness information to be exchanged by gradual increase with
closing distance.

2.5 The Avango Tool System

The virtual reality framework Avango [4] provides a virtual tool
system [5] that allows users to modify nodes in the scene graph with
tools attached to input devices. When a tool is applied to a node, the
scene graph is traversed upwards until a node is encountered that
has a point of application corresponding to the type of the tool.

3 OBJECT CAPABILITIES
3.1 The Object-Capability Model

In programming languages that support encapsulation, outsiders
have no way of accessing the private state of an object without its
consent. Access to encapsulated state can only be obtained via
the methods of the object. Encapsulation is not only important
for hiding implementation details of objects and thereby making
programs easier to maintain. It can also be used to protect objects
from each other. The object-capability model of access control
is based on the model of object-oriented computation [6]. In an
object-capability secure programming language, object references
are treated as unforgeable capabilities. Possession of a reference
gives the owner authority to communicate with the referenced object.
All object references are capabilities and inter-object communication
can only occur along these capabilities. For the remainder of this
work the terms capability, object-capability, and reference will be
used interchangeably.

In object-oriented programs objects communicate by sending
messages along references. In a capability-safe programming lan-
guage an object can obtain a reference to other objects in one of
three ways:

» By endowment: when the object is constructed, the reference is
passed as an argument to its constructor.

» By parenthood: the creator of a new object receives a reference
to the new object.

» By introduction: the object receives a reference either as part of
a message or as the return value of a message sent to another
object.

The process of introduction is illustrated in figure 2. Carol and
Bob have no way of communicating as they do not have references
to each other. Alice holds references to both of them. She introduces
Carol to Bob by sending Bob a reference to Carol as part of the
message foo. Bob then can use this reference to communicate with
Carol. In program code this is simply expressed as:

bob.foo (carol)

An object-capability secure language does not provide objects
any way to obtain references other than along the reference graph.
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Figure 2: Access by introduction [7].

C++, for example, is not capability-secure because it allows pointer
arithmetic, which can be used to obtain access to any object in pro-
cess memory. Also, object-capability secure systems do not provide
global functions and global mutable state that can be used to obtain
powerful capabilities. Some programming language environments
have a globally reachable operation fopen that can be used by any
object or piece of code in a program to open files in the file system.
This way, references to powerful objects can be obtained outside
the reference graph. In an object-capability secure system, such an
operation must not be globally reachable. Instead, the only way for
an object to gain access to a file object should be by introduction
through a third party.

When these conditions are fulfilled, a reference can be seen as
a key to an object. Only the possession of a reference enables for
sending messages to that object. Capability security allows strong
modularization of code: untrusted code can be executed without
having to worry about negative effects, because an object with no
access to critical parts of the system (e. g. file system or network)
can obviously do no harm; apart from using processing time. Only
if an object has powerful capabilities it may affect the outside world.

3.2 The E Programming Language

E is an object-oriented programming language designed to enable
secure, distributed computing (http://www.erights.org). E is a
dynamically typed, pure object language. It employs the object-
capability model to enable strong modularization. The E language
environment provides a network protocol that allows processes to
exchange capabilities over the network. Network capabilities can be
used to asynchronously execute methods of remote objects, i.e. it
does not block the sender; instead, asynchronous operations return
promise objects acting as placeholders that are resolved once the
return value arrives from the remote object. Actions can be registered
to be executed when a promise is resolved. Also, messages can be
send to the promise object even before it is resolved to a value—the
message will be sent to the future location of the result object and
queued until it is available. This way, delays caused by round trip
time are minimized.

E provides a mechanism for encoding references as universal re-
source identifiers (URI). These URIs can be converted to references.
Although these URIs contain a random string to prevent forging
attempts, E programs can ensure that the URI to an object remains
the same every time the process is restarted by using a serializa-
tion system. This way, the URI to an object becomes a persistent
capability that can be communicated in text form or stored in a file.

3.3 Capability Patterns

Facet In some situations it can be useful to further restrict the
access given by a capability. The facet pattern [8] (cf. figure 3), is
used to create capabilities that only allow certain messages to be
sent to the target object. The facet is an object that acts as a proxy
for the target object, only forwarding those messages allowed by
the facet definition. A common application of the facet pattern is to

Carol R

getName ()

getPos ()

Figure 3: The facet pattern.
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give non-mutable access to an object: only messages not changing
the state of the target object are forwarded. The facet is provided to
untrusted objects—they will be able to read the state of the target
object, but will not be able to change it. In E a facet can be defined
in the following way:

def carolR {
to getName () { return carolRW.getName () }
to getPos|() { return carolRW.getPos () }
}
bob.foo (carolR)

Revocable Forwarder Another useful capability pattern is the
revocable forwarder or caretaker, which can be used to allow tempo-
rary, terminable access to an object [9] (cf. figure 4). Once an object
has access to another object it cannot be taken away. The object
encapsulation makes it impossible to remove object references from
the object, so the only way to revoke the access given by a capability
is to destroy its target. Similar to the facet, the forwarder transpar-
ently forwards all messages to its target object. The forwarder can
be used to communicate with its target just as if direct access was
given. Each forwarder is paired with a revoker that can be used to
disable it. Once disabled, the forwarder stops forwarding messages.
All further messages to the forwarder will cause exceptions to be
thrown, making the forwarder useless. In figure 4 Alice does not
give Bob direct access to Carol, instead she provides a forwarder that
transparently forwards all communication to Carol. Alice keeps the
revoker and can use it to cut off access from Bob to Carol. Alice’s
actions can be written as E code like this:

def [forwrdr, revkr] := makeCaretaker (carol)
bob.foo (forwrdr)
revkr.revoke ()

Sealer/Unsealer The next pattern is called Sealer and Unsealer
[10]. They are constructed as pairs. A sealer is used to encapsulate

([Forwarder]

Figure 4: The revocable forwarder pattern.
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Client Sealer Unsealer
- seal(Secret Object) .
L Sealed Box
unseal(Sealed Box) .
L Secret Object

Figure 5: The sealer/unsealer pattern.

an object in another object that acts as a “sealed box.” This box can
be passed to untrusted intermediaries for storage or transportation
purposes. Only parties in possession of the matching unsealer are
able to unseal the box and use its contents (cf. figure 5). Sealing
with sealer/unsealer pairs is comparable to asymmetric public key
cryptography, although no actual encryption takes place; the sealed
box protects its contents by encapsulation. In E, a pair of sealer and
unsealer (called a brand) is constructed in the following way:

def [sealer, unsealer] := makeBrand("Name")
def secret := sealer.seal ("My secret")
unsealer.unseal (secret)

# value: "My secret"

Rights Amplification The amount of access to a resource can be
made dependent on the unsealers a party possesses. The resource
provides facets of itself sealed with certain sealers. Only parties in
possession of the matching unsealer(s) are able to unseal these facets
and use them. This is called rights amplification [1, 7]. Rights am-
plification can be used to grant access to groups of objects: instead
of storing powerful facets to all objects of a group, only a single
unsealer has to be stored. Using the unsealer, the powerful facet can
be retrieved directly from the resource, making storage unnecessary.

4 CAPABILITIES AND VIRTUAL ENVIRONMENTS

The object-capability paradigm can be applied to virtual environ-
ments on multiple levels. Its use might be limited to that of a user
interface metaphor. Security between hosts can be achieved by using
network capabilities. A capability-secure scripting layer enables
programmers to create objects that exchange capabilities with their
environment. Finally, by designing a virtual environment system
from the ground up to follow capability security rules, users can be
given direct, limited access to system modules.

4.1 An Object-Capability Secure Scene Graph

The central part of most virtual environments is the scene graph.
The scene graph is the data structure that represents the different
spatial elements which make up the virtual environment. In most
networked VEs a client-server structure is used, where the scene
graph resides on one or more central servers and is replicated on
the clients. In interactive VEs users are usually able to influence the
scene graph to some degree.

Especially for cooperative construction, training, or planning ap-
plications, a way to set fine-grained access rights for scene elements
is needed. To be able to apply the object-capability model of access
control to VEs, a prototype client-server application was developed.
The client displaying the virtual environment is shown in figure 6.
The server as well as the clients of the application are implemented
in the E language. The scene graph is stored on the server. Each
of its nodes contains visualization data including position, rotation,
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Figure 6: Screenshot of the client application

scale, material properties, and mesh data. The nodes of the scene
graph are interconnected by read-only facets. These facets can be
used to read the properties of the nodes, but not to change them.
Effectively, write access to a single node does not give further write
access to the rest of the graph.

When the server starts up, it creates an URI that can be used
by the clients to open a network reference to the root node of the
scene graph. This URI includes a random part, which makes it
unguessable. The URI thereby acts as a capability in text form. It
can be given to the client users by email or similar communication
channels.

As soon as the URI is stored to a text file in the root folder of the
client application, the client can use it to open a network reference
to the root node. The client is now able to send messages to the
root node and exchange further network references. From the root
node the client can obtain read-only facets of its children nodes. The
client is now able to recursively traverse through the scene graph
structure on the server and create local proxies for all nodes. These
proxies are responsible for data replication as well as for locally
displaying visual representations of their remote counterparts.

4.2 Interaction and Floor Control

The client has now obtained read-only facets of all nodes in the
scene graph. It can use these facets to replicate the nodes, but not
to interact with them. To do this, further capabilities of the nodes
are needed. One way of implementing interaction between user and
scene is the system of tools, mediators, and interaction operators [5],
where tools controlled by input devices can be used to modify nodes
of the scene graph. The user can choose between a number of tools
with different purposes. Tools can be used among other things to
change the position, material properties, or shape of nodes.

Mediators define a point of application for tools of a specific type.
A node can be defined as modifiable by a certain type of tool by
attaching a mediator of the corresponding type to it. The actual
interaction between tool and mediator is handled by an interaction
operator. The lifetime of this object is limited to the duration of the
interaction. Its task is to implement the transfer function based on
the inputs coming from the tool and forward the results through the
mediator into the scene graph.

Usually, situations when multiple tools try to obtain control of
a node are solved in a “first come, first served” manner. But in
large-scale systems, malicious users could use this to block objects
simply by not releasing their tools. To prevent this, policies for
“floor control” are needed. These policies are used to decide which
of a number of contending users will receive control for a pending
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Figure 7: Interaction control using a revocable forwarder. The mediator uses
its direct access to the node to construct an interaction operator. By passing
this operator to Tool A, it gives it the authority to affect the node indirectly.
When Tool B requests access, the mediator can choose to interrupt the ongoing
interaction operation and create a new operator for Tool B.

resource based on a number of conditions [11]. In most multi-user
applications, policies for floor control are defined system-wide. In
object capability systems the scene elements themselves are able
to define and enforce their own floor control policies. The system
of tools, mediators, and interaction operators can be modified to
support this.

When the system of tools, mediators, and interaction operators
is executed in a capability-secure environment, interaction opera-
tors can be interpreted as capabilities which allow their holder to
modify nodes in ways specified by their types. Mediators act as
gate-keepers to their nodes, controlling access and enforcing floor
control. By wrapping interaction operators in revocable forwarders
(see section 3.3) before passing them to tools, the mediators are
able to interrupt ongoing interaction operations at any time and cut
off access to the node. This is illustrated in figure 7. When a tool
requests an interaction operator from a mediator that has already
granted access to another tool, the mediator can choose to revoke the
access of the current tool and give access to the new tool, thereby
transferring floor control. It can also choose to ignore all incoming
requests until the current tool finishes its operation.

These relatively simple policies for floor control have their disad-
vantages. Always granting exclusive access to any requesting tool
may result in situations where users are taking turns in stealing ac-
cess to the node from another. When access is never granted during
an interaction operation, users are able to block nodes. One way
in that the mediator could deal with these problems is by allowing
exclusive access only for a certain amount of time. Once the time
has passed, it allows other tools to take over control from the current
one.

4.3 Teacher and Students

In training situations, it may be useful to have a user who is “in
charge” (i. e. the teacher), whose word carries more weight than oth-
ers. For instance, the teacher could have the ability to access nodes
exclusively even if this interrupts ongoing operations of unprivileged
users (i. e. students). Often such requirements are met by assigning
roles to the identities of users. In such a system, to obtain teacher
priorities, the user has to authenticate himself and prove that he is a
member to the teacher group.

In large VEs the relationships between users and objects can be
complex, especially when users are allowed to create their own con-
tents and define their own access rules for them. This may result
in “role explosion”, a situation where large numbers of roles or user
groups are created to specify the various relationships. In capability-
based environments, the requirements for a student/teacher system
can be met at the object level without the need for identities or
roles. Teachers differ from students in that they are able to access a
more powerful facet of the mediator, which they can use to obtain
exclusive access to the node, possibly revoking existing interaction
operators held by students (cf. figure 8). A simple way to implement

Operator
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Figure 8: Interaction control in a teacher and students scenario. While a
student (Tool A) is only able to use the functionality provided by the facet, the
teacher (Tool B) receives direct, unrestricted access to the mediator.

this is to use rights amplification (see section 3.3). The media-
tors provide a powerful facet of themselves which is sealed with a
special sealer. Teachers are defined as users in possession of the
unsealer needed to access these facets. Once unsealed, teachers use
these facets to obtain access to nodes, thereby overriding students.
Although students are also able to access the sealed facets of the
mediators, they are not able to use it as they are not in possession of
the necessary unsealer.

4.4 Communicating Capabilities

In virtual environments, as in real life, access to an object may not
only depend on prior authorization, but also on a number of other
conditions. A user that receives the key to a door is only able to use
it if he is physically able to reach the lock. By communicating capa-
bilities along different channels, different conditions can be checked
before granting access. In our prototype application, capabilities can
be communicated in a number of ways:

» Capabilities for all participants in the scene: It is possible to
attach capabilities to the publicly available read-only facet of a
node. All participants of the virtual scene are able to retrieve and
use these capabilities. In an ACL-based system, this could be
compared to assigning a read-only permission to the “all” user
group.

» Using rights amplification: By sealing a capability before
adding it to the read-only facet of a node, its usage can be re-
stricted to parties in possession of the corresponding unsealer.
In an ACL-based system, a similar effect could be achieved by
granting a permission to a certain user group.

» Using drag and drop: The capabilities of various scene ele-
ments that the user has acquired are displayed in the capability
list (cf. figure 6). By dragging an entry from this list and drop-
ping it onto the node of a virtual actor, the capability represented
by that list entry is given to the actor. The actor can react dynam-
ically to this assignment or store the capability for later use.

» By collision: Actors may exchange capabilities based on a colli-
sion detection mechanism. Capabilities exchanged by collision
can only be used by those actors that are within each other’s
proximity. Once the collision ends, all exchanged capabilities
are immediately revoked.

» By containment: The nodes of a scene graph form parent-child
relationships, which often correspond to logical relationships.
By making capabilities dependent on their position within the
scene graph it is possible to use these logical relationships for
access control. In our prototype, actors can “contain” other ac-
tors. Actors can use doors to move from one container to the
next. When an actor uses a door, the node representing it visually
is transferred from the child list of its current container to that of
the actor targeted by the door. The contained actors can use their
container to exchange capabilities with their siblings. The con-
tainer wraps all exchanged capabilities in revocable forwarders
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before passing them on. When an actor leaves its container, the
container revokes all capabilities exchanged between this actor
and its siblings.

4.5 Combining Capabilities

By making access dependent on several capabilities which are ex-
changed through different channels, it is possible to enforce terms
of service on virtual actors. To be able to use a door, actors have
to meet three conditions: They have to be inside one of the rooms
linked together by the door, be close enough to touch it, and be in
possession of the right key. To enforce this, the ent er method of
the door expects three different capabilities as arguments. One of
these capabilities is exchanged by collision. Only if actors touch
the door do they receive this capability from the collision manager.
The actors can prove that they are in the room leading to the door
by supplying a capability that the door gives through the common
parent node. The key capability can be given to the actors by drag
and drop, or alternatively the door can be made usable by everyone
by attaching the key to the door.

4.6 Meta-Information on Capabilities

To be able to react to received capabilities in a reasonable way, actors
have to have information on its type and the actor it is a capability of.
In our application prototype, capabilities are passed around wrapped
in objects of the class CapInfo. A CapInfo object provides the
following information about its capability:

» Type information Its type is identified by a simple string value,
for instance “Move” or “Buy.”

» Revocation state For capabilities that are wrapped in revocable
forwarders the revocation state is represented by a promise object
that is resolved once the capability is revoked. It is possible to
register functions with the promise object to be executed once
it becomes resolved. This can be used to dynamically react on
capability revocation. For non-revocable capabilities this value
is not set.

» Actor identity The CapInfo object includes a reference to
the read-only facet of the target node. Recipients can use this
reference to determine the actor the capability references. This
read-only facet is accessible by all participants of the scene
anyway, so including it again in the CapInfo does not give any
additional authority.

» Sealing state If the CapInfo object contains a sealed capability,
information for identifying the matching unsealer is included.
This value is not set if the capability is not sealed.

5 SCENARIO: BUMPER CARS

The following scenario is an example of rights exchange between
multiple parties:

Alice wants to go on a bumper car ride together with
her friend Bob. As soon as she has bought a ticket at
the ticket booth they enter a car together. Alice puts her
ticket into the designated slot in the car. The car starts to
drive, and because the steering wheel is mounted between
them, both Alice and Bob are able to steer it. When the
time is up, the car stops moving and Alice and Bob have
to get out.

We implemented this scenario with our prototype. We will now
give an overview about which capabilities are exchanged between
the parties in which ways. At the outset of the bumper car scenario,
there are four parties: Alice, Bob, the ticket salesman, and the
bumper car. The ticket salesman and the bumper car are virtual
actors programmed by scripts. Alice and Bob are also virtual actors,
but they are under the control of real users.

The ticket salesman wants to earn money, so it is in his interest
that everybody is able to buy tickets from him. By creating a “Buy”
capability and attaching it to his ticket booth where everybody can
reach it, he makes sure potential customers are able to buy tickets
from him.

Alice moves her actor through the virtual environment. She has
an input device that she can use to select or manipulate objects. Once
she encounters the ticket booth, she selects it, which causes her client
software to inspect it for capabilities that can be used for interaction.
Because a capability of the type “Buy” was found, the client presents
Alice a pop-up menu with a choice labeled “Buy.” If Alice selects
this entry, a monetary transaction is initiated. Monetary transactions
can be handled with capabilities in a manner that does not require
participants to reveal their identities [12]; there are a number of
implementations of capability-based virtual money available in E
[13, 7], so we will not pursue this topic further. Now that the ticket
booth has been paid, it creates a bumper car ticket and gives it
to Alice as the return value to the “Buy” message. The ticket is
wrapped in a revocable forwarder, which the booth can later on use
to invalidate it. Alice’s client stores the ticket in her capability list.

Alice navigates to a car. Once she is close enough to touch the
car, she receives the capability to enter it. Only users who can supply
a valid ticket are able to use this capability. If Alice selects the car,
her client inspects it for interaction choices. Because an “Enter”
capability is found and the required ticket is also present, a pop-up
menu with an “Enter” choice is created. If Alice selects that choice,
her client passes the ticket to the car along with the capability to
remove Alice’s actor from its current location. The car uses this
capability to move the actor into its sub-scene. Also, it sends Alice’s
ticket to the ticket booth. The ticket booth starts a timer for the
duration of the ride.

Once inside, Alice receives capabilities for the interior of the
car. Most importantly, she is able to use the steering wheel, which
means she is able to drive the car. Also, she receives another “Enter”
capability. Alice gives this capability to Bob by using drag and drop.
Bob is now able to enter the car and access the steering wheel, too.

Once the time is up, the ticket booth invalidates the ticket and
sends a message to the car to eject its occupants. Because the ticket
is now invalid, Alice and Bob have to pay again before they can go
on another ride.

The described scenario shows the dynamic exchange of fine-
grained access rights between multiple participants made possible
by object-capability security. None of the interactions require iden-
tification. The participants dynamically react to changes of access
rights. Access rights are granted dependent on conditions of distance,
parent-child relations in the scene graph, and prior authorization.

Using ACLs, the dynamic exchange of access rights described
here would be much harder to realize. Because subjects are not
informed about changes in their permissions in ACL-based systems,
dynamically reacting to changes is more difficult to implement.

6 ACTOR IMPLEMENTATION

The nodes of the scene graph are only responsible for storing and
replicating their visual properties. Interaction between a node and
the environment is handled by a separate object: the controller.
The controller object most often resides on the server, although
it is also possible to create the controller on the client side using
E’s distributed computing model. The controller is responsible
for granting and revoking capabilities as well as for dynamically
reacting to received capabilities and other input. It is able to exert
floor control policies as described in section 4.2.

On the client side, each node is paired with a view object, which
is responsible for displaying the node locally. Each view contains a
network reference to a “Use-Only” facet of the the node’s controller.
This reference can be used by the client to communicate with the
controller and obtain capabilities. When a node is selected, the client
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Figure 9: Model, view, and controller of an actor.

sends a message to its controller requesting a “Touchable” capability.
If that capability can be retrieved, the client sends it the message
touch ().

The controller, the node with its proxies on the various clients,
and the views attached to them together form a virtual actor that can
communicate with its surroundings as well as control its own visual
appearance. As shown in figure 9 this architecture is similar to the
classic Model-View-Controller meta pattern [8], with the extension
that the model is a distributed object spanning multiple systems.

The creator of a node is able to create capabilities of the actor
and store them in the controller. The facet of the controller which is
distributed to the clients cannot be used to add capabilities to it, only
to retrieve them. The following E code shows how to create a virtual
actor as well as how to add a scale capability to its controller and
making it publicly reachable:

def addActor (makeNode, makeController) {
def actorCtrl := makeController ("MyCtrl™)
def node := makeNode (
"MyNode",
[ "url" => "//server/actor_geom.ms3d",
"controller" => actorCtrl.useOnly ()
1
)
}
rootNode.add (node.readOnly())
def scale := makeScale (node)
actorCtrl.add(scale)

To create nodes, access to the node constructor makeNode is
needed. Only nodes created by this constructor are admitted to
the scene graph. To add nodes to the scene, clients need network
references to both this constructor and a node that allows for adding
child nodes. The arguments to makeNode are a name for the node
and a list of properties that define its visual appearance. The url list
entry defines the location of a 3D-mesh file to be loaded as a visual
representation of the actor. If it is set, the client loads the indicated
mesh file using the HTTP protocol and displays it as the visual rep-
resentation of the node. The reference passed as the controller
property will be distributed together with the node to the various
clients. Because other users should be able to only retrieve capa-
bilities from the controller, not to add any, a “Use-Only” facet of
the controller is given to the node constructor. makeNode returns a
reference to the newly created node. A facet of the node is created
and sent to the root node as the argument to the add message. This
causes the root node to add the node to its list of children and to
distribute it to the all participating clients. Because only a read-only
facet of the node is given to the root node, the creator can be sure
that only he has the capability to modify its properties. The reference
to the node is then used to create a “Scale” capability. The operation
makeScale creates a facet of the node that can be used to alter its

scale. This capability is made publicly available by adding it to the
controller of the node.

7 CAPABILITIES IN LARGE-SCALE VIRTUAL WORLDS

Authentication is a problem especially in decentralized virtual
worlds where users move from host to host as they change their
virtual location. In the World Wide Web, authentication is handled
by the web sites themselves, with the result that users have to create a
separate user account for each web service they want to use. Central
authentication authorities could be used to manage user identities.
This may create a scalability bottleneck as well as a central point of
failure. Alternatively, capability security allows users to acquire and
store access rights without having to first establish an identity. This
creates the possibility for decentralized virtual worlds where users
are able to interact in a flexible and anonymous manner.

A common criticism of the capability approach seems to be that
by allowing capabilities to be delegated, it is often impossible to
determine who is accountable for the way in which the delegated
capabilities are used. This can be countered by using the Horton pro-
tocol [14], which allows the delegation of capabilities while making
the recipient himself accountable for the actions he takes with them.
There are many applications for this protocol in virtual worlds: In
our bumper car example, Alice could delegate the capability to drive
the car to Bob without making herself responsible for the way he
uses it. The Horton protocol also shows that it is possible to imple-
ment identity-based security systems on top of capability systems,
thereby combining the best of both worlds.

In virtual worlds that allow users to execute scripts and add
contents, self-replicating objects are a big problem as these can
quickly use up all system resources. This is called gray goo attack or
fork bomb attack and has emerged in various multi-user dungeons
(MUDs) and systems like Second Life. In capability-secure virtual
environments it is possible to prevent this kind of attack by using an
agoric approach [13]. The creation of objects is seen as a capability
which can only be used in exchange for a certain amount of a virtual
currency. The cost of creating new objects can be made dependent
on the number of objects already present in the system. This way,
as the number of objects approaches a system limit, the “price” for
new objects rises until nobody is able to afford it.

The use of object capabilities does not have to impose a per-
formance penalty. Many of the performance trade-offs of object-
capability security have already been accepted when an object-
oriented language was chosen for implementing a VR system. By
using “taming systems” such as Joe-E (http://www.joe-e.org), main-
stream object-oriented languages can be made capability-secure. It
allows existing development tools to be used for creating capability-
secure systems. Also, the need to acquire a capability for an object
before being able to affect it does not impose the need for an extra
network round-trip between client and server. Using E’s “promise
pipeline” feature [6], the client can queue messages so that they are
delivered to the capability immediately.

By treating the nodes of the scene graph themselves as capa-
bilities, parts of the scene can be hidden from unauthorized users
or displayed using lower level of detail substitutes. In multi-user
construction tasks, confidential parts of the scene could be hidden
from unauthorized users until they are introduced to them by an
authorized party.

In capability-secure virtual environments it is possible to give
user-created scripts direct access to parts of the core system. Allow-
ing scripts restricted access to the collision detection system or to
influence the physical dynamics of the world enables a whole new
level of programming within the virtual world. It then becomes a
platform for creating complex cooperative applications like multi-
user CAD systems, games, and team planning scenarios.
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8 CONCLUSIONS AND FUTURE WORK

In capability-secure virtual environments, users and virtual actors
are able to anonymously exchange fine-grained access rights and dy-
namically react to granted access rights. Because use of capabilities
does not require authentication, central authentication authorities
become unnecessary. This allows for the creation of fully decentral
web-like virtual worlds.

Especially in large-scale virtual worlds that are not under central
control, it is important that virtual actors are themselves able to
control the ways in that they can be influenced by the environment.
In capability-secure environments, actors can define and enforce
floor control policies as well as making access to their functionality
dependent on contextual variables such as proximity or containment.
By using a collision detector to exchange access rights, access to
the methods of a virtual actor can be made dependent on distance.
Virtual actors can decide which interactions to allow at a certain
distance or which awareness information to reveal. By employing
multiple collision volumes with different extent, it is possible to
implement the concepts of nimbus and aura [3].

Interaction design is a critical aspect of computer security [15].
We argue that the provision of capabilities is a better metaphor
for managing access rights than adding the subject to an ACL. By
binding capabilities to user interface elements, assigning permissions
can be made transparent to the user.

Our virtual environment application prototype is far from com-
plete. There are several directions in which this work can be ex-
tended. The user interface for managing capabilities is only rudi-
mentary. A more complete interface would have to support the
creation and assignment of facets as well as revocation of delegated
capabilities. Also displaying capabilities in a list on the screen may
become confusing if large numbers of actors are present in the scene.
Usability can be possibly improved by displaying capabilities in
the scene coupled to their targets. The PASION project [16] has
developed a gesture interface for group interaction in immersive
virtual environments. By using this or similar interfaces to commu-
nicate capabilities, access control can be made more intuitive and
user-friendly.

In the SPACE model [17] the virtual environment is segmented
by boundaries. Users are allowed to traverse boundaries depending
on possession of passwords or other attributes. User access to an
object is dependent on the paths by which they can reach the object.
Using the developed mechanisms for capability assignment, access
control systems such as SPACE can be implemented on the scripting
level in a secure way.

Upon receiving capabilities from a third party, the recipient can-
not be certain that the information contained in the CapInfo ob-
ject is correct. The recipient also cannot be certain that he is not
communicating with an impostor. A future implementation might
have to provide a service for verifying the information contained in
CapInfo objects. This means that different tasks require different
protocols and capabilities. Is it then sufficient to have a limited com-
mon vocabulary of capabilities and protocols to use them? Or should
users be able to define new types of capabilities and protocols?

If large-scale virtual worlds are to become platforms for trade and
cooperative work, better tools are needed for defining and enforcing
access rights as well as security protocols. By using the object-
capability model to design and implement virtual environments, safe
cooperation between untrusting partners becomes possible and many
of the security problems of current virtual worlds can be solved
elegantly.
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