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Abstract. We developed a GPU-based volume ray casting system for
rendering multiple arbitrarily overlapping multi-resolution volume data
sets. Our efficient volume virtualization scheme is based on shared re-
source management, which can simultaneously deal with a large number
of multi-gigabyte volumes. BSP volume decomposition of the bounding
boxes of the cube-shaped volumes is used to identify the overlapping and
non-overlapping volume regions. The resulting volume fragments are ex-
tracted from the BSP tree in front-to-back order for rendering. The BSP
tree needs to be updated only if individual volumes are moved, which is a
significant advantage over costly depth peeling procedures or approaches
that use sorting on the octree brick level.

1 Introduction

The oil and gas industry is continuously improving the seismic coverage of sub-
surface regions in existing and newly developed oil fields. Individual seismic
surveys are large volumetric datasets, which have precise coordinates in the
Universal Transverse Mercator (UTM) coordinate system. Often the many seis-
mic surveys acquired in larger areas are not merged into a single dataset. They
may have different resolutions, different orientations and can be partially or even
fully overlapping due to reacquisition during oil production. Dealing with indi-
vidual multi-gigabyte datasets requires multi-resolution techniques[1–3], but the
problem of handling many such datasets has not been fully addressed.

We developed an approach for the resource management of multiple multi-
resolution volume representations, which is the base infrastructure for our effi-
cient GPU-based volume ray casting system. Through the use of shared data
resources in system and graphics memory we are able to support a virtually
unlimited number of simultaneously visualized volumetric data sets, where each
dataset may exceed the size of the graphics memory or even the main mem-
ory. We also demonstrate how efficient volume virtualization allows for multi-
resolution volumes to be treated exactly the same way as regular volumes. The
overlapping and non-overlapping volume regions are identified and sorted in
front-to-back order using a BSP tree. The main advantage of our approach com-
pared to very recent work by Lindholm et al. [4] is that only bounding boxes
of the cube-shaped volumes are dealt with in the BSP tree instead of the view-
dependent brick partitions of the involved volumes. As a result our approach
requires recomputations of the BSP tree only if the spatial relationship of the
volumes changes.
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2 Related Work

Visualizing a large volume data set requires the use of level-of-detail and multi-
resolution techniques to balance between rendering speed and memory require-
ments. Multi-resolution rendering techniques are typically based on hierarchical
data structures to represent the volume data set at various resolutions. LaMar
et al. [1] and Boada et al. [2] use an octree data structure to generate a multi-
resolution volume hierarchy. Plate et al. [3] focused on out-of-core resource man-
agement in multi-resolution rendering systems. Until recently all multi-resolution
volume rendering systems achieve the visualization of the multi-resolution vol-
ume hierarchy by rendering each individual sub-volume block in a single volume
rendering pass and use frame buffer composition to generate the final image.
This approach has limitations with respect to algorithmic flexibility and render-
ing quality, e. g. the implementation of advanced volume ray casting techniques
such as early ray termination and empty space skipping is cumbersome and
inefficient compared to their implementation in a single pass algorithm.

The virtualization of multi-resolution data representations enables the imple-
mentation of single pass rendering algorithms, which can be implemented such
that they are mostly unaware of the underlying multi-resolution representation
of the data set. Kraus and Ertl [5] describe how to use a texture atlas to store
the individual volume sub-blocks in a single texture resource. They use an index
texture for the translation of the spatial data sampling coordinates to the texture
atlas cell containing the corresponding data. Based on this approach single pass
multi-resolution volume ray casting systems were introduced by Gobbetti et al.
[6] and Crassin et al. [7]. Both are based on a classic octree representation of the
volume data set and store the octree cut in a 3D-texture atlas. Instead of an
index texture to directly address the texture atlas they use a compact encoding
of the octree similar to [8]. The leaf nodes of the octree cut hold the index data
for accessing the sub-blocks from the texture atlas. Individual rays are traversed
through the octree hierarchy using a similar approach to kd-restart [9], which
is employed for recursive tree-traversal in real-time ray tracing algorithms on
the GPU. Our multi-resolution volume virtualization approach is similar to the
one used by Gobbetti et al. but we employ an index texture for direct access to
the texture atlas cells. This way we trade increased memory requirements for
reduced octree traversal computations.

Jacq and Roux [10] introduced techniques for rendering multiple spatially
aligned volume data sets, which can be considered a single multi-attribute vol-
ume. Leu and Chen [11] made use of a two-level hierarchy for modeling and ren-
dering scenes consisting of multiple non-intersecting volumes. Nadeau [12] sup-
ported scenes composed of multiple intersecting volumes. The latter approach,
however, required costly volume re-sampling if the transformation of individual
volumes changes. Grimm et al. [13] presented a CPU-based volume ray casting
approach for rendering multiple arbitrarily intersecting volume data sets. They
identify multi-volume and single-volume regions by segmenting the view rays at
volume boundaries. Plate et al. [14] demonstrated a GPU-based multi-volume
rendering system capable of handling multiple multi-resolution data sets. They
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identify overlapping volume regions by intersecting the bounding geometries of
the individual volumes and they also need to consider the individual sub-blocks
of the multi-resolution octree hierarchy. They still rely on a classic slice-based
volume rendering method, and thus the geometry processing overhead becomes
quickly the limiting factor when moving either individual volumes or the viewer
position. Roessler et al. [15] demonstrated the use of ray casting for multi-volume
visualization based on similar intersection computations. Both approaches rely
on costly depth sorting operations of the intersecting volume regions using a
GPU-based depth peeling technique. Very recently Lindholm et al. [4] demon-
strated a GPU-based ray casting system for visualizing multiple intersecting
volume data sets based on the decomposition of the overlapping volumes using
a BSP-tree [16]. This allows for efficient depth sorting of the resulting volume
fragments on the CPU. They describe a multi-pass approach for rendering the
individual volume fragments using two intermediate buffers. While they sup-
port the visualization of multi-resolution volume data sets, their approach is
based on the insertion of the volume sub-blocks in the BSP-tree resulting in a
very large amount of volume fragments and rendering passes. Even though our
approach is also using a BSP-tree for efficient volume-volume intersection and
fragment sorting, we do not need to insert volume sub-blocks into the BSP-tree
and our efficient volume virtualization technique can deal with a large number
of volumes.

3 Rendering System

In this section we will describe the most important parts of our multiple multi-
resolution volume ray casting system. We first give a brief overview over all sys-
tem components and their relationships followed by more detailed descriptions
of the resource management, our virtualization approach for multiple multi-
resolution volumes and the rendering method.

3.1 System Overview

Our main goal with this rendering system is to efficiently visualize multiple
arbitrarily overlapping multi-gigabyte volume data sets. Even a single data set
is potentially larger than the available graphics memory and might even exceed
the size of the system memory. For this reason we also need to support out-
of-core handling of multiple multi-resolution data sets. The rendering system
consists of three main parts: The brick cache, the atlas texture and the renderer
(cf. figure 1).

We use an octree as the underlying data structure for the volume represen-
tation similar to [1–3]. The original volume data sets are decomposed into small
fixed-size bricks. These bricks represent the leaf nodes of the octree containing
the highest resolution of the volume. Coarser resolutions are represented through
inner nodes, which are generated bottom-up by down-sampling eight neighbor-
ing nodes from the next finer level. Inner nodes have the same size as their
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Fig. 1: The multi-volume rendering system. The renderer maintains the octree represen-
tations of the individual volumes. The brick cache asynchronously fetches requested data
from the external brick pool to system memory. The atlas texture holds the current working
set of bricks for all volumes. For each volume an individual index texture is generated to
provide the address of the actual brick data in the atlas texture during rendering.

child nodes. Consequently, all nodes in the octree are represented by bricks of
the same fixed size, which acts as the basic paging unit throughout our system.
Each brick shares at least one voxel layer with neighboring bricks to avoid ren-
dering errors at brick boundaries due to texture interpolations as suggested by
[17]. The pre-processing of all volume data sets is done completely on the CPU
and the resulting octree representations are stored in an out-of-core brick data
pool located on a hard drive.

During rendering a working set of bricks of the individual volumes is defined
by cuts through their octree representation as described in [2]. The renderer
maintains these octree cuts and updates them incrementally at runtime using a
greedy-style algorithm. This method is guided by view-dependent criteria and a
fixed texture memory budget. For updating the octree cuts only data currently
resident in the brick data cache is used to represent the multi-resolution volumes.
Unavailable brick data is requested from the out-of-core brick pool. This way the
rendering process is not stalled due to slow data transfers from the external brick
data pool. The brick cache asynchronously fetches requested brick data from the
brick pool on the hard disk making the data available for the update method as
soon as it is loaded.

After the update method finished refining the octree cuts the current working
set of bricks in graphics memory is updated to mirror the state of the octree
representations. We use a single large, pre-allocated atlas texture of a fixed size
to store the working sets of all volumes. This enables us to balance the texture
resource distribution over all volumes in the scene (cf. section 3.2). For each
volume an individual index texture is maintained in graphics memory. These
index textures encode the individual octree subdivisions of the different volumes
and allow direct access to the volume data stored in the atlas texture.

The volume ray casting approach used in our system makes use of the individ-
ual index texture of each volume to locate the corresponding brick volume data
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in the shared atlas texture during ray traversal. Based on a BSP-tree we differen-
tiate overlapping from non-overlapping volume regions. This approach provides
us with a straightforward depth ordering of the resulting convex volume frag-
ments. These volume fragments are traversed by the rays in front-to-back order
to generate the final image.

3.2 Resource Management

Our out-of-core volume rendering system is able to handle multiple extremely
large volumes. The biggest memory resources are the brick data cache and the
atlas texture. We chose both to be global, shared resources for all volumes that
need to be handled at a time. In contrast to individual non-shared resources
attached to every volume this allows us to balance the memory requirements of
all volumes against each other. If, for example, volumes are moved out of the
viewing frustum or are less prominent in the current scene the unused resources
can be easily shifted to other volumes without costly reallocation operations
in system and graphics memory (cf. figure 2). The brick cache acts as a large
second-level cache in system memory, which holds most recently used brick data.
We employ an LRU - least recently used - strategy when replacing data cells in
this cache. The atlas texture then acts as the first-level cache for the ray casting
algorithm. The atlas texture contains the leaf nodes of the current octree cuts of
all volumes. We also employ an LRU strategy for managing unused brick cells of
the atlas texture to allow for caching if the atlas is not fully occupied by bricks
involved in rendering. However, this is rarely the case, since the handled volumes
are orders of magnitudes larger than the available texture memory resources.

The greedy-style algorithm incrementally updates the octree cut represen-
tations of the individual volumes on a frame-to-frame basis. This algorithm is
constrained in two ways. First it tries to stepwise approximate the most optimal

Fig. 2: This figure shows the texture resource distribution between two seismic volume data
sets during a zoom-in operation. As the left volume is moved closer to the viewer a larger
amount of the fixed texture resources are assigned to it leaving less resources for the right
volume. The size of the bricks in the generated octree cuts, shown as wire frame overlays,
show the local volume resolution. Blue boxes represent the highest volume resolution while
green boxes show lower resolutions.
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Fig. 3: The main tasks performed by the rendering system during one rendering frame. After
updating the octree cuts the requested brick data is transfered from system to graphics
memory in parallel to the rendering process. After uploading and rendering finished the
transfered data is swapped to the actual atlas texture. The HDD-to-RAM fetching process
is completely decoupled from rendering.

octree cuts for all volumes under the limit of the available atlas texture memory
budget. Second, due to the limited bandwidth from system to graphics memory,
only a certain amount of bricks is inserted or removed from the octree cuts in
each update step. As shown in figure 2 the update method distributes the avail-
able texture resources amongst all volumes. The method terminates if the octree
cuts are considered optimal under the current memory budget constraints ac-
cording to view-dependent criteria or if no more required brick data is resident
in the brick cache. Unavailable brick data is fetched asynchronously from the
hard disk for future use. Once the data becomes available the update method
is able to insert the requested nodes. In addition to the explicitly required data
the update method also pre-fetches data into the brick data cache.

Stalling of the rendering process due to atlas texture updates needs to be
avoided to guarantee optimal performance of the rendering system. Updating a
texture that is currently in use by the rendering process would implicitly stall
the rendering process until the current rendering commands are finished. We
employ an asynchronous texture update strategy using a dedicated brick upload
buffer, which can be asynchronously written during rendering. After the current
rendering frame is finished the content of this buffer is swapped to the actual atlas
texture. This leads to a parallel rendering system layout essentially consisting of
three parallel tasks as shown in figure 3. Due to the asynchronous update of the
atlas texture the rendering process always uses the data prepared and uploaded
during the previous rendering frame.

3.3 Volume Virtualization

The key to combining multi-resolution volume representations with single-pass
ray casting systems is an efficient virtualization of the multi-resolution texture
hierarchy. Texture virtualization refers to the abstraction of a logical texture re-
source from the underlying data structures, effectively hiding the physical char-
acteristics of the chosen memory layout. We chose a single atlas texture of a fixed
size to represent the multi-resolution octree hierarchies of the volumes by storing
their working sets of bricks. Due to the fact that all bricks representing any node
in the octree hierarchy are of the same size exchanging brick data in the atlas
texture is a straightforward task without introducing complex memory manage-
ment problems like memory fragmentation. While similar approaches using an
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(a) Atlas Texture (b) Index Texture (c) Final Rendering

Fig. 4: Volume ray casting using virtualized multi-resolution textures. (a) Atlas texture
containing brick data of two volumes. (b) Index textures of the two volumes in the scene.
(c) Final rendering based on volume ray casting.

atlas texture for GPU-based volume ray casting systems have been proposed in
[6, 7] our method uses index textures to encode the octree subdivisions for direct
access to the volume data cells in the atlas texture as suggested by [5]. Gobbetti
as well as Crassin [6, 7] use compact octree data structures on the GPU intro-
ducing logarithmic octree traversal costs. While they describe how to efficiently
traverse such a data structure their approach lacks the flexibility for arbitrary
texture lookups required for e. g. gradient calculations. In contrast using an in-
dex texture for direct access to the atlas data reduces the lookup computations
to a constant calculation overhead. A texture lookup into a virtualized volume
texture requires the following two steps: Sampling the index texture at the re-
quested location which results in a index vector containing information where
the corresponding brick data is located in the atlas texture and scaling infor-
mation. Using this information the requested sampling position is transformed
to the atlas texture coordinate system and the respective sample is returned.
Using this index texture approach we exchange fast access to the required atlas
texture indexing information for a moderately larger memory footprint. These
index textures are several orders of magnitude smaller in size than the actual
volumes because they describe the octree representation on a brick level.

Integrating our multi-resolution volume virtualization approach with single
pass volume ray casting is realized as a straightforward extension to the ray
traversal. The basic ray casting algorithm remains completely unaware of the
underlying octree hierarchy. Only the data lookup routine has to be extended,
which hides all of the complexity from the rest of the ray casting method. Be-
cause of the relatively small size of the index textures we achieve good texture
cache performance when accessing the index textures in a regular pattern as is
the case with volume ray casting and gradient calculations. Figure 4 shows an
example of a scene consisting of two seismic volumes rendered, which is using
our virtualization approach and rendered by volume ray casting on the GPU.

3.4 Ray Casting Multiple Multi-Resolution Volumes

For visualizing multiple arbitrarily overlapping volume data sets it is important
to differentiate between mono-volume and multi-volume segments as emphasized



8 Christopher Lux Bernd Fröhlich
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Fig. 5: Decomposition of two multi-resolution volumes into homogeneous volume fragments
using an auto-partitioning solid-leaf BSP-tree. Only the bounding geometries of the volumes
are used for the decomposition.

by Grimm et al. [13]. They identified different segments along the ray paths for
a CPU-based ray casting implementation. In contrast we segment the overlap-
ping volumes and use a GPU-based ray casting approach. We use a BSP-tree-
based approach similar to Lindholm et al. [4] to identify overlapping and non-
overlapping volume fragments. While they also support multi-resolution volume
data sets their approach treats each brick in the multi-resolution hierarchy as a
separate volume. Thus, the BSP process generates an immense amount of volume
fragments, which need to be rendered in sequential rendering passes. As a con-
sequence, changing the view causes updates of the multi-resolution hierarchy,
which forces them to recreate the complex BSP-tree. In contrast our efficient
volume virtualization enables us to treat multi-resolution volumes in exactly
the same way as regular volumes by only processing their bounding geometries,
which only needs to happen during setup or if the actual volumes are moved.

Our BSP implementation is based on an auto-partitioning solid-leaf BSP-tree
[16]. The BSP-tree is generated using the bounding geometries of the individual
volumes, which also define the split planes. Figure 5 shows an exemplary volume
decomposition for two volumes creating four convex polyhedra containing only
one fragment, which is overlapped by both volumes. The BSP-tree allows efficient
depth sorting of the resulting volume fragments on the CPU, which is required
for correct traversal during the actual volume ray casting process.

The volume ray casting method processes all visible volume fragments in
front-to-back order. Each fragment is processed in a single ray casting pass in-
dependent of the number of contained bricks. We use shader instantiation to
generate specialized ray casting programs for the different number of volumes
overlapping a particular fragment. Two intermediate buffers are used during this
multi-pass rendering process: An integration buffer stores the intermediate vol-
ume rendering integral for all rays. Another buffer stores the ray exit positions
of the currently processed volume fragment. We need to generate the exit posi-
tions explicitly using rasterization because the irregular geometry of the volume
fragments generated by the BSP-process does not allow simple analytical ray
exit computations on the GPU. During the exit point generation the accumu-
lated opacity from the integration buffer is copied to this buffer to circumvent
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potential read-write conflicts during ray casting when writing to the integration
buffer. The accumulated opacity is used for early ray termination of individual
rays. A volume rendering frame of our system consists of the following steps:
First, the intermediate buffers are cleared. Then the ray exit positions for each
volume fragment are generated by rendering the back faces of the fragment poly-
hedrons. In the following step the single pass volume ray casting is triggered by
rendering the front faces, which generates the ray entry points into the volume
fragment while the exit points are read from the second image buffer. The re-
sult of the individual ray casting passes is composited into the integration buffer
incrementally accumulating the complete volume integral for each ray.

4 Results

We implemented the described rendering system using C++, OpenGL 3.0 and
GLSL. The evaluation was performed on a 2.8GHz Intel Core2Quad workstation
with 8GiB RAM and a single NVIDIA GeForce GTX 280 graphics board running
Windows XP x64 Edition. We tested our system with various large data sets with
sizes ranging from 700MiB up to 40GiB. Most datasets were seismic volumes
from the oil and gas domain. For this paper we used scenes composed of multiple
large seismic multi-resolution volumes as shown in figure 6. Due to confidentiality
reasons we are only able to show one small data set containing 1915× 439× 734
voxels at 8bits/sample. We duplicated the volume several times to show the
ability of our system to interactively handle very large amounts of data. The
chosen brick size for all volumes was 643, the atlas texture size was 512MiB
and the brick data cache size 3GiB. Images were rendered using a view port
resolution of 1280× 720.

For the evaluation we emulated potential oil and gas application scenarios
for multi-volume rendering techniques. Seismic models of large oil fields contain
multiple potentially overlapping seismic surveys, which can only be inspected
one at a time or adjacent surveys have to be merged. Using our multi-resolution
multi-volume rendering approach arbitrary configurations can be directly ren-
dered without size limitations, the need for resampling, or adjacency relation-
ships. Figure 6 shows some artificial configurations of sets of surveys.

Our system is able to handle many large volumes simultaneously through the
described resource management for multiple multi-resolution volumes. Figure 6c
shows a scene composed of nine multi-resolution volumes managed through the
shared brick data cache and atlas texture. The rendering performance using
our multi-volume ray casting system for virtualized multi-resolution volumes is
mainly dependent on the screen projection size of the volumes, the used volume
sampling rate and the chosen transfer functions. The memory transfers between
the shared resources have only little influence on the rendering performance.

Table 1 shows the very short BSP-update times and the fast frame render-
ing times for the example scenarios presented in figure 6. We also experimented
with artificial scenarios containing up to nine completely overlapping volumes.
The number of volume fragments grew quickly to 500 fragments requiring BSP-
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(a) Scenario 1: three volumes, at most two overlapping volumes

(b) Scenario 2: three volumes, at most three overlapping volumes

(c) Scenario 3: nine separate volumes

Fig. 6: Example scenes containing three to nine multi-resolution volumes. The left images
show the final rendering. The right images show the current volume BSP-tree decompo-
sition. The brightness of the volume fragments represents the respective depth ordering.
Fragments being part of multiple volumes are shown in red.

update times up so several milliseconds, which resulted in a large number of
required rendering passes. While the BSP-update affects rendering performance
during volume manipulation viewer navigation remained fluent. For the scenario
shown in figure 6c containing nine non-overlapping volumes we also compared
the performance of our multi-volume rendering approach to a single-volume im-
plementation, which renders and blends non-overlapping volumes sequentially.
We observed frame rates very similar to our multi-volume approach. Thus, the
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Example
Scenario

Volumes Overlapping
Volumes

Volume
Fragments

BSP-Tree
Update Time

Rendering
Frame Time

1 3 2 13 0.15ms 22Hz
2 3 3 44 0.28ms 16Hz
3 9 0 9 0.29ms 14Hz

Table 1: BSP-tree update and frame rendering times for the example scenarios shown in
figure 6. The brick size for all volumes was 643, the atlas texture size was 512MiB and the
brick data cache size 3GiB using a view port resolution of 1280× 720.

overhead for maintaining the multiple render targets for the ray casting method
in such a scenario is small compared to the actual cost for ray casting.

5 Conclusions and Future Work

We presented a GPU-based volume ray casting system for multiple arbitrarily
overlapping multi-resolution volume data sets. The system is able to simultane-
ously handle a large number of multi-gigabyte volumes through a shared resource
management system. We differentiate overlapping from non-overlapping volume
regions by using a BSP-tree based method, which additionally provides us with
a straightforward depth ordering of the resulting convex volume fragments and
avoids costly depth peeling procedures. The resulting volume fragments are effi-
ciently rendered by custom instantiated shader programs. Through our efficient
volume virtualization method we are able to solely base the BSP volume decom-
position on the bounding geometries of the volumes. As a result the BSP needs
to be updated only if individual volumes are moved.

The generation of our multi-resolution representation is currently based on
view-dependent criteria only. Transfer function-based metrics and the use of oc-
clusion information [6] can greatly improve the volume refinement process and
the guidance of the resource distribution among the volumes in the scene. Intro-
ducing additional and user-definable composition modes for the combination of
overlapping volumes can increase visual expressiveness [18].

Our ultimate goal is to interactively roam through and explore an multi-
terabyte volume data sets. Such scenarios already exist in the oil and gas do-
main where large oil fields are covered by various potentially overlapping seismic
surveys. Surveys are additionally repeated to show the consequences of the oil
production, which generates time varying seismic surveys. Currently no infras-
tructure exists to handle such extreme scenarios.
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