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ABSTRACT

We present a novel geometry-based approach for the detection of
small-scale cracks in a temporal series of 3D-reconstructions of
concrete objects such as pillars and beams of bridges and other in-
frastructure. The detection algorithm relies on a geometry-derived
coloration of the 3D surfaces for computing the optical flow be-
tween time steps. Our filtering technique identifies cracks based on
motion discontinuities in the local crack neighborhood. This ap-
proach avoids using the material color which is likely to change
over time due to weathering and other environmental influences.
In addition, we detect and exclude regions with significant local
changes in geometry over time e.g. due to vegetation. We verified
our method with reconstructions of a horizontal concrete beam un-
der increasing vertical load at the center. For this case, where the
main crack direction is known and a precise registration of the beam
geometries over time exists, this approach produces accurate crack
detection regardless of substantial color variations and is also able
to mask out regions with simulated growth of vegetation over time.

1 INTRODUCTION

A timely, accurate and reliable detection of damages of built in-
frastructure is essential to prevent potential failure and increased
costs for maintenance and repair. While monitoring of build-
ings, bridges and other infrastructure objects by various acquisition
and 3D reconstruction technologies is slowly becoming feasible
(e.g. [1] [16]), the algorithmic detection of damages such as small-
scale cracks is difficult due to changes of the radiometric properties
of surfaces under varying lighting conditions, weathering and other
environmental influences.

In this work, we developed a crack detection pipeline that relies
on at least two 3D-reconstructions of a real-world object from two
different points in time. In a first step, we replace the radiometric
information of the surfaces by a geometry-derived color, which is
based on a local geometric feature invariant under transformations
as well as large-scale non-rigid deformations. We establish corre-
spondences between the two time steps through means of optical
flow [12] and search for motion discontinuities which may corre-
spond to cracks. We also developed a novel geometric descrip-
tor which helps to identify incorrect correspondences between time
steps and allows us to exclude regions that are subject to geometric
occlusions e.g. by vegetation. In our current implementation, a pre-
cise registration of the geometry over time is required and the main
crack direction has to be known or manually found.

Our work is inspired by Chaudhury et al. [8] who suggested to
find cracks by exploiting local discontinuities in 2D optical flow
along the crack line. Their approach relies on a sequence of images
that are acquired under constant lighting conditions and, in their
use case, in rapid succession. It is our goal to develop an approach
for outdoor environments where radiometric variations of the ma-

terial due to weathering and lighting conditions as well as occlu-
sions caused by the growth of vegetation are common side effects
of longer time spans between acquisitions. In related work, the of-
ten image-based crack detection approaches commonly attempt to
reduce the amount of false positive matches arising from these real-
world influences by a posteriori filtering or connected component
analysis. However, substantial detection disturbances cannot easily
be removed in post-processing and impose obstacles on the appli-
cability of image-based methods. Therefore, we argue that in many
cases the color of the material is not ideally suited for detecting
small-scale cracks.

Our geometry-based crack detection approach is centered around
the following contributions:

• the development of a local geometric feature to be used in
optical flow computations that performs similarly well as the
surface color of 3D objects made from concrete if no ra-
diometric changes are present but remains to enable the ro-
bust detection of correspondences with radiometric variations
when color-based optical flow estimations fail

• an efficient verification of uncertain correspondences in 3D
optical flow caused by occlusions using a novel SSIM-based
geometric descriptor for point clouds

• a sparse voxel octree-based filtering approach for the detec-
tion of small-scale cracks which operates on material dis-
placement, rather than the color offset of the cracks them-
selves

We integrated all proposed techniques into a framework for
the spatio-temporal detection of cracks in a temporal series of
large point clouds and demonstrated their effectiveness with 3D-
reconstructions of a horizontal concrete beam under increasing ver-
tical load at the center.

2 RELATED WORK

With few exceptions, the detection of cracks has been driven
by image-based methods in the past. Combinations of percola-
tion [28] [27], genetic programming [17] and, more recently, ma-
chine learning [7] [9] have been applied successfully to detect and
measure minuscule-scale cracks in single images. Advances have
been made to produce crack detection from image sequences. Ben-
ning et al. [3] first proposed to compute deformation of material
under stress using photogrammetry. Since then, a number of re-
searchers employed digital image correlation (DIC) to detect micro-
scale cracks in 2D displacement fields [6] [13] [20] [22].

More recently, Chaudhury et al. [8] suggested the detection of
early stage cracks in image sequences by filtering for discontinu-
ities in optical flow. Similar to DIC-based methods, their approach
relies on the surface color of concrete material and is not ideally
suited for outdoor environments, when radiometric variations over
time other than those along cracks are significant. In addition, po-
tential occlusions over time in photo sequences can lead to an unre-
liable image-based detection of cracks and were left unattended in
previous work.



Figure 1: Overview of our proposed crack detection pipeline.

Detection disturbances caused by uneven illumination and shad-
ows in images have been addressed in previous work. Qu et al. [21]
eliminate detection noise through percolation processing of im-
ages while Li et al. [15] improve detection performance by pre-
dicting per-pixel crack probabilities through convolutional neural
networks. We propose a distinct and novel approach to perform the
crack detection, which is particularly robust against variations of
material color, shadows and illumination.

We establish correspondences between two point clouds through
means of optical flow. Optical flow estimation is a technique for
computing relative motion in image sequences. Especially global
methods [12] are useful for the dense and accurate determination of
non-rigid displacements. We utilize a GPU-accelerated implemen-
tation of a coarse-to-fine variational optical flow algorithm [5] and
store the resulting motion information in an auxiliary data structure
based on sparse voxel octrees (SVO) [14].

3 DETECTION OF SMALL-SCALE CRACKS

For the autonomous localization of structural risks on a regular ba-
sis, we analyze geometric deformations over time to inform crack
detection. Regular 3D acquisition and reconstruction of built infras-
tructure enables the detection and observation of geometric defor-
mations and changes of the surface since references from the past
are available.

In this work, a 3D-reconstruction at a point in time t is repre-
sented by a point cloud Ct which is constituted by points residing
on surfaces of the reconstructed object. Each point is associated
with a color and a normal vector. We detect the formation of small-
scale cracks over time by filtering for discontinuities in geometric
deformations between Ct and a second point cloud Ct+δ , which was
acquired at a later point in time.

Figure 1 depicts an overview of our proposed crack detection
pipeline. In a preprocessing step, we derive geometric features from
both point clouds to establish a basis for optical flow estimation be-
tween our data sets. Next, we compute 2D optical flow [5] for a
set of viewing points onto the point clouds and combine coinciding
samples through a weighted blending based on surface normals and
viewing directions to obtain a 3D surface flow field. The 3D sur-
face flow field describes the displacement between surface points
in Ct to corresponding positions in Ct+δ . Finally, we filter the 3D
surface flow to detect motion discontinuities, which correspond to
cracks residing on the surface. The detected cracks are already reg-
istered into the coordinate system of the two input point clouds for
subsequent analysis.

Initially, we replace per-point radiometric information with a
geometry-based coloring, which is introduced in section 4. For the
3D surface flow estimation, we synthesize renderings of both point
clouds from predefined viewing points generated from the camera
extrinsics used for the structure-from-motion-based 3D reconstruc-
tion of both point clouds. At each viewing point, we compute 2D
optical flow between the two data sets and combine coinciding op-
tical flow samples from all viewing points to estimate an accurate

3D surface flow. The estimation of 3D surface flow is presented in
section 5. In a postprocessing step, we verify the established cor-
respondences by considering the geometric similarity in both point
clouds using a novel SSIM-based descriptor. To produce our crack
labeling, we determine a suitable filter orientation locally and con-
volve the 3D surface flow using a Gradient of Gaussian kernel. Sec-
tion 6 describes our postprocessing and filtering in detail. The de-
tection accuracy of the proposed pipeline is evaluated in section 7.

4 GEOMETRY-BASED COLORING

The material color is often not ideal for detecting small-scale
cracks, as radiometric variations due to weather and lighting con-
ditions, graffiti or markings are frequent side effects of longer pe-
riods between acquisitions and can cause detection problems. In
addition, vegetation growing in the vicinity of concrete surfaces in-
troduces geometric occlusions which may inhibit detection even in
areas where cracks remain visible otherwise.

To mitigate these limitations, we replace per-point RGB infor-
mation with a local geometric recoloring which is not influenced
by uneven illumination, shadows or dirt and therefore well-suited
to inform the detection of cracks. The geometry-based coloring
should be invariant under transformations as well as large-scale
non-rigid deformations of our data sets over time. Per-point surface
normals provide a suitable starting point for our feature. We com-
pute a best-fitting plane through a sufficiently large neighborhood
pi ∈Ct , |x− pi|< ε of any point x and replace the color associated
with point x by a gray-scale value based on nx

T nplane, where nx and
nplane are the normals of point x and the plane respectively. Con-
trast stretching improves the saliency of the feature and leads to a
better utilization of the available color range.

Figure 2 depicts our recoloring of a point cloud alongside the
original material color for comparison. This pseudo-coloring is ex-
clusively based on a local deviation from planarity of surface nor-
mals and enables the estimation of accurate 3D surface flow which
is not disturbed by radiometric variations between the point clouds
over time.

5 3D SURFACE FLOW ESTIMATION

In our approach, the 3D surface flow serves two purposes. Firstly,
it allows us to infer correspondences of points on object surfaces
in the presence of non-rigid displacements between our data sets.
Secondly, we exploit motion discontinuities alongside crack bound-
aries to inform our crack detection. Thus, our detection is not based
on the color offset of the cracks themselves as in most previous
work, but on the displacements of the surrounding material. This
is advantageous, because crack detection based on color offset can
lead to false positives in outdoor areas, e.g. discoloration due to
rust may be classified as a crack.

Since our data sets consist of points residing on object surfaces,
we require 3D flow information only for those regions which con-
tain surfaces. Therefore, we do not apply a global variational op-
tical flow algorithm in three dimensions directly. Instead, we esti-
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Figure 2: In previous work, the detection of cracks is based purely on
the color of the material (a). We propose to replace the original mate-
rial colors by a geometry-based artificial coloring (b), which allows us
to perform crack detection even in the presence of severe radiomet-
ric disturbances (c) that would otherwise introduce a considerable
amount of false positive matches and therefore result in unreliable
crack detection.

mate the optical flow in 2D, and project the flow vectors back onto
the 3D surfaces. The resulting representation can then be filtered
in three dimensions to obtain crack labels in the coordinate system
of the two input point clouds. We use an auxiliary sparse voxel
octree (SVO) [14] to store and validate the computed 3D surface
flow in a discretized space. The SVOs spatial resolution is based
on the local point density such that it is high close to surfaces and
low in empty regions. This representation also allows for adaptive
precision when filtering for discontinuities.

To compute a 3D surface flow between two point clouds, we
sample both data sets from the set of viewing points used for
3D-reconstruction, which guarantees that all surfaces are covered.
First, we render both data sets in two separate passes and use a
GPU-accelerated optical flow implementation to determine the 2D
flow between our point clouds as seen by a virtual camera posi-
tioned and oriented according to a specific extrinsic at a time. The
synthesized images used for the estimation of optical flow are based
on the artificial recoloring presented in section 4. Then, we project
each leaf-level voxel corresponding to point cloud Ct onto the im-
age plane of the current view and interpolate the optical flow at this
position. Next, we add the estimated motion vector and unproject
the resulting position using the depth buffer corresponding to Ct+δ .
Thus, we obtain two world positions residing on the surface of the
two data sets and the vector connecting them contributes to the per-
voxel 3D surface flow. The flow contributions of flow samples from
all viewing points are weighted into the adaptive SVO data struc-
ture based on the cosine similarity between the current viewing di-
rection and the surface normal at the voxel under consideration,
which has the effect of weighting samples taken from viewing di-
rections orthogonal to the local surface higher than oblique ones.
For each viewing point, we prevent the sampling of flow for voxels
which are occluded by other parts of the data set by intersecting a
ray connecting the voxel center and the viewing point with the SVO
data-structure.

In our system, the 3D points are rendered as oriented, circular
surfels [19] to approximate a closed surface. We achieve a high
feature preservation by blending overlapping surfels smoothly us-
ing a 2-pass surface splatting approach [4]. For this purpose, we
estimate the radii of all surfels such that a visually watertight sur-
face is constructed.

Our data sets consist of hundreds of millions of colored points
and their memory footprint can exceed the gigabyte-range. To scale
our pipeline to very large, highly-detailed 3D data sets, we suggest
a level-of-detail (LOD) approach similar to Goswami et al. [11], de-
signed to effectively reduce the amount of data persistent in mem-
ory while optimizing the resolution of the data set for each viewing
point. Alternatively, it is possible to split large point clouds into
several overlapping sub point clouds before processing.

6 POST-PROCESSING AND FILTERING

Optical flow is prone to artifacts arising from geometric occlusions
in particular and therefore, geometric changes in close proximity
of the concrete surface (e.g. growth of vegetation) cause unreliable
optical flow estimations. To reliably prevent false positive matches
caused by erroneous correspondences, we propose to mask out re-
gions where correspondences are uncertain by exploiting geometric
information available in our point cloud reconstructions.

6.1 Masking of Uncertain Correspondences

For any 3D surface flow sample s, we compare the geometric and
radiometric similarities of two regions Ct(x) and Ct+δ (x

′) in our
point clouds, where x′ = x+ s. We consider the regions similar if
Ct+δ (x

′)≈Ct(x) according to a suitable similarity measure.
Previous work has invented a number of geometric descriptors

for the comparison of point clouds [10] [25] [23] [18]. Commonly,
these descriptors consider the local neighborhood of a query point
through binning approaches [2] and score the similarity of two
queries. Alexandre [2] concludes that descriptors for point clouds
should incorporate radiometric information to improve their perfor-
mance. Palma et al. [18] propose a multi-scale shape descriptor
based on a moving least square spherical fit through a local patch
of the point cloud. They report strong change segmentation results,
however, similar to most point cloud descriptors, their method does
not account for radiometric information associated with points.

We introduce a customized descriptor based on our geometry-
derived coloring to verify correspondences in our pipeline. First,
we employ a unique, unambiguous local reference frame estab-
lished in [24] to orient our descriptors relative to the underlying
local surface. This greatly improves the potential similarity of the
descriptors even if the orientation of the surface under consideration
changed. Next, we divide the neighborhood pi ∈Ct , |x− pi| < ε

and p j ∈Ct+δ , |x′− p j|< ε of the query points x and x′ into spher-
ical bins. We found a multiple of the voxel edge length to be a
suitable choice for ε . In our weighting scheme, we first assign a
unit-length central axis nb to each bin b. The contribution of points
to each bin b is inverse-distance weighted by acos(nb

T ( pi−x
‖pi−x‖ )) or

acos(nb
T (

p j−x′

‖p j−x′‖ )), which are the angular deviations between the
bin axes nb and the normalized vectors connecting the query points
x and x′ with the points pi and p j, respectively (Figure 3a). Finally,
we perform a weighted averaging of our geometry-derived coloring
for each bin.

For our choice of a suitable similarity measure, we use the struc-
tural similarity index (SSIM) [26] and we require the number of
bins in both descriptors under comparison to be equal. For the com-
parison of two descriptors, we follow Wang et al. [26]:

SSIM(x,y) =
(2µbx µby +C1)(2σbxby +C2)

(µbx
2µby

2 +C1)(σbx σby +C2)
(1)

In our case bx and by denote the set of bins of two descriptors,
µ denotes the average and σ the variance of the per-bin values,
and σbxby corresponds to the covariance of bx and by. If the struc-
tural similarity of two SSIM-descriptors is too low to support a
correspondence, we remove the associated flow information and
mask the region for the remainder of our pipeline. We only mask
leaf-level voxels of the SVO directly, and propagate masking infor-
mation to the inner voxels of the hierarchy. If any child voxel is
masked, we also mask its parent, but we stop propagating mask-
ing information at a voxel edge length of 2 cm. This provides for
cleaner, more reliable albeit more coarse masks.

Our masking of voxels prevents false positive matches in regions
of the data sets where considerable geometric changes between ac-
quisitions would otherwise introduce erroneous optical flow corre-
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Figure 3: (a) Illustration of our SSIM-based geometric descriptor for
point clouds. For simplicity, it is shown in two dimensions but the
principle extends in a straightforward manner to three dimensions.
We divide the space around the query point in radial bins. The con-
tribution of a point p to any bin is computed through inverse distance
weighting of the angular deviations (depicted in yellow) to the nearest
central bin axes n0 and n1. (b) Illustration of the tangential reference
frame used in our filtering approach. For each filtering step, we av-
erage per-voxel flow directions in the neighborhood (left) to produce
v f . Our filtering direction d f is orthogonal to the surface normal n f
and v f (middle). We filter for discontinuities in flow directions along
d f (right) using a Gradient of Gaussian kernel.

spondences. The resulting masks are used to prohibit crack detec-
tion during filtering and crack labeling.

6.2 Filtering and Crack Labeling
To derive a crack labeling from our 3D surface flow, we use the
adaptive representation of the sparse voxel octree. Initially, only a
subset of leaf-voxels contain flow information. To propagate flow
information to all voxels, including the interior ones, we apply a
push-and-pull algorithm on the SVO. Starting from the leaf level
voxels, we average existing flow information in a bottom-up pro-
cess to the inner voxels of the hierarchy. When we reach the root-
voxel, we start a top-down propagation of flow information from
parent voxels to any children which do not contain flow yet. Dur-
ing this process, we avoid the traversal of any masked voxels and
their descendants. After this process, all non-masked voxels of the
SVO contain flow information.

We use a Gradient of Gaussian filter to detect discontinuities in
our surface flow and obtain a per-voxel crack response. To perform
filtering on our sparse voxel octree, we choose the size of the filter
based on the edge length of the voxel at the center of the filter and
use efficient point insertions to look-up values of adjacent voxels.

Our data sets are registered into a joint coordinate system and
we focus on the detection of cracks in a concrete beam which is put
under increasing vertical load at its center. Thus, the local crack di-
rections roughly agree with the direction of non-rigid displacement
of the concrete material. In this case, the most decisive spatial axis
d f to detect cracks lies tangential to the local surface patch and or-
thogonal to the direction of the crack. The filter response is highest
along this axis when cracks are present. Therefore, we construct
a local reference frame to orient our filter tangential to the local
surface patch for any filtering step (Figure 3b).

7 RESULTS AND DISCUSSION

We conducted an evaluation of our spatio-temporal crack-detection
method by example of a 240 centimeter long concrete beam which
was put under increasing load at its center and captured for 3D-
reconstruction using 327 images. We tested our implementation
with three point cloud series (Figure 4), each of which consists of
two time steps; one without stress and one with high vertical load
that shows a moderate amount of vertical cracks. To simulate the
application of graffiti and growth of vegetation between acquisi-
tions, we added radiometric and geometric variations to the second

(a) Series 1 (b) Series 2 (c) Series 3

Figure 4: This figure shows the second time step of three point cloud
series used in our evaluation. Each series consists of two time steps,
the first of which remains unchanged for all three data sets. Series
1 features no substantial variations of color or geometry over time.
We added color variations to the surface of Series 2 in the second
time step to simulate application of graffiti over time and to evalu-
ate our approach when facing significant radiometric variations over
time. In addition, we used an ivy generator to simulate the growth of
vegetation over time in the second point cloud of Series 3.

time steps of our data sets. Each point cloud consists of 579 million
points and amounts to approx. 9 GB.

Commonly, ground-truth comparisons are burdened by the dif-
ference in width of strokes made during manual annotation and the
detected crack labels. This difference is a decisive factor as it can
cause considerable disagreement during cell-by-cell comparisons.
To alleviate this quality factor, we propose a hierarchical compari-
son.

We consider precision and recall with respect to the granularity
of our comparisons. First, we label all leaf-level voxels in our SVO
data structure that contain cracks according to our detection. Next,
we propagate labels to the interior voxels of the hierarchy until the
root node is reached. This representation of hierarchical labels al-
lows us to perform a ground-truth comparison at different resolu-
tions corresponding to a spectrum of detection accuracy at different
scales. Finally, we created a manually annotated ground-truth SVO
for comparisons which contains hierarchical labels created in a sim-
ilar manner.

Figure 5 presents precision and recall scores when comparing
our detection to manually annotated ground-truth cracks. We per-
form the comparison at 8 depths of our SVO data structures corre-
sponding to specific voxel edge lengths in millimeters. Our results
show, that we achieve a precision greater than 0.8 for accuracy in
the millimeter range. At the sub-millimeter scale, a number of false
positive matches decreases the precision. The propagation of crack
labels to interior nodes of the SVO allows for coarser comparisons
which improve the precision score. Above a voxel edge length of
2 mm, our high recall scores indicate that cracks were completely
detected. False negative matches caused by disagreements in stroke
widths start to appear below 2 mm and cause recall scores to drop.

Our approach avoids the use of original material color for crack
detection and is therefore particularly robust against radiometric
variations in 3D-reconstructions (Series 2). A complete detection
of cracks in Series 3, which features considerable geometric occlu-
sions in the second point cloud, is impossible and the correspond-
ing recall score is upper-bounded by 0.85 in our case. However, the
consistent precision scores show that the pipeline is able to miti-
gate false positive matches commonly arising from severe geomet-
ric changes between acquisitions.

We implemented the approach described in [8] which operates
on a series of photographs in order to derive crack detection from
discontinuities in optical flow. To allow for hierarchical compar-
isons with their work, we used two photographs of our concrete
beam with their pipeline and propagated hierarchical crack labels
in a quad-tree approach. Table 1 presents a comparison of f1-
scores with respect to cell edge lengths chosen for comparison. The
comparison suggests that all approaches perform well for Series 1,
where no significant color variations or geometric occlusions be-



Figure 5: The plots show precision and recall scores of detected
cracks in comparison with a ground-truth annotation. We perform a
hierarchical comparison and the voxel edge length corresponds to
the depth of our SVOs chosen for comparison.

Accuracy Color-based Geometry-
based

[8]

8.333 mm 0.995 0.995 0.987
4.166 mm 0.963 0.963 0.941
2.083 mm 0.932 0.929 0.865
1.042 mm 0.841 0.821 0.791
0.521 mm 0.687 0.669 0.732
0.260 mm 0.572 0.554 0.695

Table 1: Comparison of f1-scores for Series 1 with respect to cell
edge lengths. All f1-scores decrease at higher comparison accuracy
because the ground-truth annotation stroke width does not agree
perfectly with the detection, causing lower recall values. Our f1-
scores are computed by comparing crack labels at specific depths
of a ground-truth SVO with detected crack labels at the correspond-
ing depths. F1-scores for [8] are obtained by analogously comparing
2D-layers of a ground-truth image pyramid of crack labels with a sec-
ond image pyramid derived from the detected crack labels.

tween time steps exist. The lower f1-score of our method at very
high detection accuracy can be attributed to the granularity of the
3D-reconstructions used for evaluation.

When tested with Series 2 and Series 3, the image-based method
proposed in [8] yields recall and precision scores between 0.02 and
0.2. These very low scores are caused by false positives due to
considerable changes in color and geometry of these data sets over
time. In comparison, our results show that the use of 3D point
clouds and the inherent geometric information can alleviate false
positive matches caused by radiometric variations of the original
material color as well as occlusions in overgrown regions.

Before correspondence estimation, we replace material colors by
a geometry-based coloring as described in section 4. The similar-
ity between 3D surface flow estimated using this recoloring and 3D
surface flow created using the original material color is very high
(PSNR = 56.01, SSIM = 0.9978). This confirms that the flow esti-
mation based on our artificial recoloring results in a very similar 3D
surface flow as the original color. In practice, the f1-scores based on
flow obtained from the original material color, and flow estimated
with our geometry-based coloring differ marginally.

Without taking the 3D-reconstruction into account, our pipeline
takes approx. 1 hour and 41 minutes to process two time steps of
our concrete beam data set (Figure 6).

In this work, we primarily focused on the detection of cracks
caused by vertical bending stress and we assumed crack directions

Figure 6: This figure illustrates the overall time in seconds taken to
process each of our point cloud series shown in Figure 4.

to agree with the surrounding directions of displacement. The sup-
plementary video shows a GPU-accelerated SVO-filtering to pro-
duce crack labels on the fly based on an interactively chosen filter-
ing direction in the local surface plane. In our case, filtering direc-
tions orthogonal to the direction of the crack in the surface plane
produce stronger crack detection results.

Illumination conditions and shadows may occasionally limit the
reconstruction quality of surfaces in practice and we do not expect
3D-reconstructions to be available for an entire building or bridge
everywhere in the wild. It would be sufficient to produce 3D-
reconstructions in critical regions where cracks are most likely to
occur. The accuracy of our method strongly depends on the signifi-
cance of small-scale discontinuities with respect to the surrounding
motion and therefore, a precise registration is required. Further im-
provements will be necessary to use our method with series of point
clouds that are unregistered or deformed substantially between ac-
quisitions.

8 CONCLUSION

We presented an algorithm for the detection of small-scale cracks
in outdoor environments based on motion discontinuities in 3D
surface flow. Optical flow estimation based on our local geo-
metric feature produces correct correspondence information even
in the presence of significant color variations, provided that 3D-
reconstructions from two different points in time are available. As
a result, our sparse voxel octree-based 3D filtering technique iden-
tifies cracks by exploiting local material displacement information,
rather than the color offset of the cracks themselves. Our pipeline
also incorporates a novel SSIM-based descriptor for point clouds
to mask out poor correspondence estimations that may originate
from geometric occlusions over time. We have shown that our filter
identifies overgrown regions which allows us to limit the detection
to those areas where cracks are visible.

In the future, we plan to generalize our method to enable the de-
tection of all types of cracks in concrete and other materials, in-
cluding cases where crack directions are not known in advance.
Currently, we estimate motion from synthesized image pairs cor-
responding to a set of view points. An improved pipeline should
estimate 3D surface flow directly and geometrically from the point
cloud representations.
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