
Volume 0 (1981), Number 0 pp. 1–8

CPU-GPU Hybrid Real Time Ray Tracing Framework

S.Beck , A.-C. Bernstein , D. Danch and B. Fröhlich

Lehrstuhl für Systeme der Virtuellen Realität, Bauhaus-Universität Weimar, Germany

Abstract
We present a new method in rendering complex 3D scenes at reasonable frame-rates targeting on Global Illumi-
nation as provided by a Ray Tracing algorithm. Our approach is based on some new ideas on how to combine
a CPU-based fast Ray Tracing algorithm with the capabilities of todays programmable GPUs and its powerful
feed-forward-rendering algorithm. We call this approach CPU-GPU Hybrid Real Time Ray Tracing Framework.
As we will show, a systematic analysis of the generations of rays of a Ray Tracer leads to different render-passes
which map either to the GPU or to the CPU. Indeed all camera rays can be processed on the graphics card, and
hardware accelerated shadow mapping can be used as a pre-step in calculating precise shadow boundaries within
a Ray Tracer. Our arrangement of the resulting five specialized render-passes combines a fast Ray Tracer located
on a multi-processing CPU with the capabilites of a modern graphics card in a new way and might be a starting
point for further research.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Ray Tracing, Global
Illumination, OpenGL, Hybrid CPU GPU

1. Introduction

Within the last years prospects in computer-graphics are
growing and the aim of high-quality rendering and natural-
ism enters into many disciplines of graphics such as Anima-
tion, Film, Games and even Virtual Reality. In a few years
reality and virtual reality might be less and less distinguish-
able. Therefore new methods are introduced and invented in
the context of Render Engines for Games and Virtual Reality
Systems.

Ray Tracing is one of the oldest and most promising meth-
ods to render 3D scenes with respect to Global Illumina-
tion in terms of physically correctness and therefore will
always be an actual research topic. It is a simple but pow-
erful model for generating shadow, reflection and refraction
and even more phenomena like Motion Blur , Depth of Field
and others. With respect to naturalism Ray Tracing even is
a kind of overkill in simulating lights and its specular re-
flection, depending on the lighting model, and the depth of
recursion when computing reflection on a surface. On the
one hand Ray Tracing with its branched algorithm is inef-
ficient and the computational time increases in a non-linear
behavior when adding complexity. The lack of hardware ac-
celeration therefore inspired Wald et.al to design a prototype
and the results are showing promise. On the other hand a

Ray Tracer can compute every pixel of an image separately
in parallel which is done in clusters and render-farms and
shortens render time. Additionally many acceleration tech-
niques have been introduced that adopt well to Ray Tracing
such as BSP and Light Buffers or techniques that try to Gen-
eralize Rays.

Radiosity and its correctness in a diffuse Global Illumi-
nation should be mentioned and kept in mind as well. But
because of its non-trivial algorithm it will remain computa-
tional expensive and wonÂt’t target on real-time rendering.
Though the realism and image quality are remarkable and
phenomena like color bleeding can be handled as well as
area lights, shadow, reflection and even more.

When concentrating on high complexity scenes and inter-
active frame-rates the best compromise still is and will be
a GPU based feed-forward rendering pipeline such as pro-
vided by OpenGL. In addition the programmability of today
graphics pipelines, respectively the Vertex and Fragment-
Programs, have introduced a new generation of real-time ef-
fects and approximations of phenomena like soft-shadows
and environment-mapping, multi-texturing and other tech-
niques. These all claim to add realism to a rendered scene.
Nevertheless reflection via environment-maps and shadows

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

generated by e.g.a hardware accelerated Shadow Mapping
Technique are fake.

As a result, when analyzing these different rendering
methods, we can combine the power of todays graphics
cards and the physically correct Global Illumination of a
Ray Tracer in a new way. We will therefore explain how to
break down the Ray Tracing algorithm into different render-
passes treating every generation of rays separately. We will
then show which parts can be satisfied by the graphics card
and how to integrate a Fast Ray Tracing algorithm to add
a Global Illumination component to a rendered scene. With
the wish of shifting as much as possible to the GPU start-
ing with the first generation of rays, which a Ray Tracer
would fire, we end up in our interleaved and hybrid CPU-
GPU Ray Tracing approach which we present in the follow-
ing sections.

2. Related Work

In [Wal04] Wald describes the OpenRT software real-time
Ray Tracing system, which is a pure software solution. It
achieves interactive performance through the usage of sev-
eral techniques including a fast triangle intersection, an opti-
mized BSP, fast BSP traversal and the usage of the SIMD ex-
tension. Furthermore caching and memory optimization are
combined in a wise manner. For efficiency and linear scaling
of the OpenRT Renderer, it is possible to add more CPUs by
clustering.

Havran [Hav00] did an intensive study on hierarchical
subdivision methods. His optimized kd-tree adopts well to
complex scenes and has a compact storage of inner and outer
nodes and an efficient traversal algorithm. Indeed his re-
searches constitute that a kd-tree is an optimal BSP and in-
troduce a cost-function-based algorithm for the position of
the splitting plane.

Algorithms for adding shadows to 3D scenes in the con-
text of Real Time Rendering are research topics in many
publications. Beside Shadow Volumes and other well known
techniques the image based Shadow Mapping algorithm was
improved by Stamminger and Drettakis in [SD02]. Their is-
sue in how to reduce the so called perspective aliasing arte-
facts which are implied by uniform shadow maps gave a
starting point for many other researchers. The basic idea
is to distribute the resolution of the depth range in a non-
linear manner using a perspective transform during the gen-
eration of the shadow map. Wimmer and Scherzer have in-
troduced a light space perspective Shadow Mapping algo-
rithm, shortened LiSPSM, which is based on this general idea
in [WSP04]. Indeed they argued that any Perspective Trans-
form could be used to achieve a wise distribution of depth
in the Shadow Map. They also give a fundamental overview
and analysis of the different occurring aliasing errors and
provide a robust and quasi-optimum solution for generating
shadows with Shadow Mapping.

Several approaches exist to map the Ray Tracing algo-
rithm to the GPU. The increasing programmability of GPUs
makes it possible to implement Ray Tracing using shader
programs which can be found in [PBMH02] [Chr05]. In ad-
dition to pure software solutions, several hardware designs
were introduced e.g. [CRR04], [JS02], [SWW∗04]

3. Our concept

3.1. Motivation

We want to render 3D scenes of medium to high complexity
at reasonable frame-rates and resolutions including Global
Illumination as provided by a Ray Tracing algorithm. On
the other hand a Real Time Ray Tracing approach without
respect to the power of todays graphics cards would lead to
low performance without clustering workstations. Therefore
we developed a hybrid CPU-GPU Real Time Ray Racing
Framework by combining the power and possibilities of to-
days programmable rendering pipelines with a "fast as pos-
sible" Ray Tracing algorithm located on the CPU.

3.2. Analysis of the Ray Tracing Algorithm

When analyzing a classical recursive Ray Tracing algorithm
we end up in so called Generations of Rays which have to
be processed for each pixel of the Image. Launching a gen-
eration of primary (camera) rays followed by their shadow
rays and subsequent generations of rays depending on the
properties of the hidden surfaces would be a typical overall
Algorithm.

In our approach we will show that the first generation of
rays can be represented by classical feed forward render-
ing in terms of the OpenGL rendering pipeline. In addition
the corresponding shadow rays can also be processed on the
graphics card. Mapping further generations of rays to an al-
gorithm located on the graphics card is not suitable on the
other hand. This is mainly caused by non existent accelera-
tion techniques and the huge amount of data to be processed
for these generations.

3.3. Naming the Render-tasks

In the following subsection we describe our concept of
spreading up the different stages of a classical Ray Tracing
algorithm as independent tasks for the GPU and CPU:

• Primary Shadow Rays: To generate the shadows for the
camera rays we use a light space perspective shadow map-
ping algorithm which is located on the graphics card.
For better results we can additionally refine the shadow
boundaries, which are typically aliased, in two post pro-
cessing steps: We first blur all shadow boundaries in im-
age space within a short fragment-shader. This blur step
would mark all boundaries as "not clean" and we are then
capable to perform a traditional shadow test with shadow
rays located on the CPU for the boundaries.

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

• Reflection and Refraction Rays: For the calculation of
the reflective and refractive parts of the image we use a
fast Ray Tracing algorithm which is located on the CPU.
In a pre-step we generate a special id-frame-buffer by en-
coding a unique number for each triangle primitive of the
scene, rendering this special geometry set on the standard
OpenGL graphics pipeline as shown in Figure 2. This first
step gives us the intersection result of all camera rays with
the scene. After a read-back this frame-buffer enables a
fast decision whether to calculate a reflection and or re-
fraction ray for a single pixel when iterating the id-frame-
buffer on the CPU. The reflective and refractive contribu-
tion of a pixel with respect to shadow can be calculated
by our fast Ray Tracing algorithm then.

// Pass #1 Shadow-map Generation
shadowmap->update(eyepos,viewdir,lightdir);
shadowmap->beginShadowMapGeneration();
scene->drawRAW();
shadowmap->endShadowMapGeneration();
glClear(DEPTH_BUFFER_BIT);
// Pass #2 Id-Shading and Shadow Test
shadowmap->start();
idshader->start();
scene->drawID();
idshader->stop();
shadowmap->stop();
// Pass #3 Blurring the Alpha Channel
copy_framebuffer_to_texture();
screen->setupOrtho();
blurshader->start();
screen->draw();
blurshader->stop();
screen->resetState();
// Pass #4 Perform Ray Tracing on CPU
copy_framebuffer_to_hostmemory();
resetRayGenerations();
for(all pixels in framebuffer){
id = get_id(pixel);
checkIDandfillRayGenerations(id);
clearRGB(pixel);

}
generateRayGenerations();
scene->intersect(raygenerations);
metashader->shade(raygenerations);
// Pass #5 Primary Rays + Global Illumination
copy_framebuffer_to_gpumemory();
globalshader->start();
scene->draw();
globalshader->stop();
display the framebuffer
glutSwapbuffers();

Figure 1: Pseudocode of our five render-passes.

• Primary Rays: As mentioned above the surfaces hit by
the camera rays can completely be shaded on the graphics
card. With the opportunity of defining individual shader
within a programmable rendering pipeline we can apply

the same phong-shading algorithm for the camera rays on
the GPU as we would in a traditional Ray Tracer on a
CPU. Therefore the overall biggest computational part of
the image generation, which are the primary rays, can be
completely done by the GPU.

Figure 2: Visualization of the ID-Shading step: The number
of a triangle is encoded in its color value. Black means no
triangle hit by a camera ray.

3.4. Resulting Render-passes

Summarizing the above render-tasks and combining them
appropriately we result in five render-passes as illustrated in
pseudocode in Figure 1 and outlined in the following listing:

1. In a first pass we generate a Shadow Map. Therefore we
update the Shadow-map settings appropriately and just
send down a vertex-only geometry set of our scene the
rendering pipeline. No additional information like mate-
rials or vertex normals are needed. This pass affects only
the Depth Buffer.

2. After this pass we can perform the shadow mapping for
our scene and combine it with the id-shading step. There-
fore we first setup the OpenGL Texture State with a
Projection- and Modelview-Matrix in Light Space. Now
we render our special id-geometry set writing the en-
coded triangle number as RGB color and simultaneous
do a shadow map depth-test within a fragment-shader and
write the result of this test into the alpha channel of the
frame-buffer. As a temporary result we get a frame-buffer
with the triangle number for each camera ray encoded in
the RGB part and the information of shadow in the al-
pha channel. This step is done by the following special
id-fragment-shader:

// id fragment-shader
uniform sampler2DShadow depthtexture;
varying vec4 id;
void main (void)
{
// ...we do the projective depth test
vec4 depthz = shadow2DProj(depthtexture,

gl_TexCoord[0]);
// ...and write the id and result
// of depth test to the fragment

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

gl_FragColor = vec4(id.rgb, depthz.r);
}

3. In a following blur pass we just alter the alpha chan-
nel as described in the subsection above for marking the
shadow boundaries. The blurring is done by a conven-
tional convolution filter. We therefore copy the frame-
buffer to a texture and perform a weighted texture lookup
in a fragment-shader and write the new alpha value for
each fragment as result and leave the RGB channels un-
touched:

// blur fragment-shader
uniform sampler2DRect tex;
void main (void)
{
// ...we define our Convolution Kernel
// and an Offset
...
// ...calculate the new blurred shadow value
float shadow = 0.0;
for(int i = 0; i < KernelSize; i++)
shadow += KernelValue[i]*

texture2DRect(tex,
gl_FragCoord.xy + Offset[i]).a;

// and get the id which will be unchanged
vec4 id = texture2DRect(tex,gl_FragCoord.xy);
gl_FragColor = vec4(id.rgb, shadow);
}

4. After copying the frame-buffer to the host memory the
next pass is done with our fast Ray Tracer on the CPU.
By iterating the frame-buffer, respectively the triangle
ids in the RGB part of a pixel and the value for the
shadow in the alpha part. The overall Ray Tracing al-
gorithm generates a reflection ray when identifying tri-
angle number as reflective and performs a Ray Tracing
for each of these. The reflective contribution then over-
writes the id in the frame-buffers RGB channels. The re-
fractive pixels are handled in the same way by generat-
ing refractive rays respectively. On the other hand non-
reflective and non-refractive pixels will be set to zero. For
the marked shadow boundaries, which are non-zero and
non-full-byte values in the alpha part, shadow rays are
generated and tested for intersection with the scene. As a
result of this additional Ray Tracing shadow test the value
in the alpha channel is set to 0 for shadow or 255 for no
shadow respectively. These two tasks modify the frame-
buffer with respect to a reflective and refractive contribu-
tion and an ensurance of shadow or illumination of each
pixel in the resulting image.

5. After copying this new frame-buffer to a texture a last
render-pass can produce the final image. By rendering
the geometry with vertex-normals and materials states the
GPU can shade the primary rays with our individual de-
fined illumination model and can combine the informa-
tion of shadow or not for each fragment and furthermore
adds the contribution of reflection and refraction, calcu-
lated by the former CPU Ray Tracing, to the final pixel.

This can be done in one single pass within a Global Il-
lumination fragment-shader by calculating the fragments
color with respect to the values in the frame-buffer tex-
ture supplied by the former CPU pass:

// Global Illumination fragment-shader
uniform sampler2DRect tex;
varying vec3 normalVec;
varying vec3 vertPosition3;

void main(void){

...

coords = gl_FragCoord.xy;
normal = normalize(normalVec);
light = vec3(gl_LightSource[0].position.xyz);
light = normalize(light);
eye = normalize(-vertPosition3);
half = normalize(light + eye);

// get shadow from alpha
shadow = texture2DRect(texture, coords).a;
// calculate local Illumination...
col = gl_LightSource[0].ambient *

gl_FrontMaterial.ambient;
// ...with respect to Shadow
col += shadow *

gl_LightSource[0].diffuse *
gl_FrontMaterial.diffuse *
max(dot(NLightVec,NNormal), 0.0);

shiny = pow(max(dot(normal, half), 0.0),
gl_FrontMaterial.shininess);

col += shadow * gl_LightSource[0].specular *
gl_FrontMaterial.specular * shiny;

MyColor.a = 1.0;
// get ray traced contribution from rgb
rtcol = texture2DRect(texture, coords).rgb;
// add it...
col.rgb += rtcol.rgb;
gl_FragColor = col;
}

Figure 3 gives an overview of the above five render-tasks and
outlines the different stages of the frame-buffer, respectively
the RGB and alpha channel. The resulting image then in-
cludes precise shadow boundaries for the primary and prox-
imate generations of rays and correct reflective and refractive
parts.

3.5. Interleaving and Multi-threading the
Render-passes

As the CPU and the GPU are individual processors we can
accelerate the overall rendering by interleaving the render-
passes appropriately. The CPU pass depends on the first
three GPU passes and can then be done separately without
the need of any GPU computations. Therefore the CPU and
GPU can run in separate threads and the different render-
passes can be interleaved as shown in Figure 4:

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

Figure 3: The resulting render-passes: From left to right the
small image in middle shows the content of the RGB part and
the lower one the state of the alpha channel of the frame-
buffer respectively. Only the fourth render-pass is done by
the CPU whereas the others are done by the graphics card.

Figure 4: The interleaving of the render-passes: The two
time-lines, respectively graphics card and the CPU sym-
bolize the different render-passes and the interleaving, note
that CPU and GPU operate on different frames. SM:
Shadow Map generation; ID+A: ID-Shading and Shadow
Depth-test in one step; BLUR ALPHA: Shadow Bound-
aries are blurred; PHONG ADD REF: combining the re-
sults of the former CPU-pass within a phong-fragment-
shader as described in the text in a final render-pass; RE-
FLECTION+ALPHANICE: the CPU Ray Tracing pass and
shadow-boundary test as described in the text.

While the GPU does the shadow-map generation, the
Shadow Mapping and the blurring of the shadow boundaries
for frame n as described in the subsection above, the CPU
can work on the frame-buffer of frame n − 1 at the same
time. When the CPU work is done for frame n−1 the GPU
can go on with the last pass for frame n-1 and in parallel
the CPU can go on with frame n. With this concept we can
ensure that at least the CPU, which is the bottleneck, is al-
ways working to full capacity, while the GPU might still be
under-worked.

To enable this interleaving technique we developed a
double-buffer state for each entity which could change in
between two frames. These are the camera, the light and the
frame-buffer. Holding two states for each of them we can
ensure that the two parallel processes always work on the
correct state of the scene. As a consequence the out-coming
final image will have a delay of one frame.

On machines with dual-processors and or hyper-
threading-CPUs we can additionally split the CPU part into
multiple threads. Because the relevant computations are in-
dependent for each pixel there are no crossovers between the
parallel threads. Therefore each thread can individually it-
erate through a subset of the frame-buffer and perform the

render-pass on its subset as described before. The multi-
threading capability thus additionally shortens the overall
computation time of the CPU part.

4. Implementation

We built and tested our framework on two PCs with follow-
ing configurations:

• testSysI: graphics card: GeForce R© 6600 GT (driver
NVIDIA 1.0-6629); processor: AMD R© Athlon XP
2800

TM
CPU 2.0 GHz, RAM: 1024 MByte ; operating

system: Linux Fedora Core 2
• testSysII: graphics card: Quadro R© 3400 (driver NVIDIA

1.0-7162); processor: Intel R© Xeon
TM

Dual CPU
3.20GHz, RAM: 4096 MByte ; operating system: Linux
Fedora Core 3

Our Framework is written completely in C++ and GLSL and
is targeted to Linux with support for the Intel compiler, ver-
sion 8.1 and above, and also the gnu compiler collection gcc,
in version 3.3.3 and above. For optimal performance we use
the Intel C++ Compiler on testSysI.

As mentioned before we implemented a kd-tree as BSP of
our 3D scenes. For an optimal placing of the splitting plane
we used a cost function as explained in [Hai]. The size of
the kd-Tree nodes is squeezed to 8 byte [Wal04] for optimal
memory usage and cache alignment.

As aforementioned several classes are double-buffered
in order to interleave the CPU and GPU render-passes.
Such are abstractions for camera,light and the frame-buffer.
To handle the vertex and fragment programs we use the
libGLSL developed at our university, which provides a sim-
ple interface for defining and loading shader from a file with-
out recompiling. For the generation of the Shadow Map we
used LiSPSM-Algorithm introduced by [WSP04].

In order to provide hardware accelerated Shadow
Mapping and to run our different Vertex and Fragment
Programs the following OpenGL Extensions are nec-
essary: GL_ARB_shadow, GL_ARB_shader_objects,
GL_ARB_shading_language_100, GL_ARB_depth_texture
and GL_ARB_texture_rectangle.

Furthermore two additional libraries were used: The boost
libraries in Version 1.32 which provides threads, respec-
tively boost::thread. And due to the need of a 16 byte
alignment of all C++ objects our MemoryManager uses
boost::pool. This guarantees that all objects are memory
aligned for optimal cache alignment and the correct support
for of the CPUs SIMD-Extension, which we use in our math-
library for vector- and matrix-arithmetics.

5. Results and Discussion

The following Results and a Discussion on these emphasizes
on the overall performance, such as render-time and scalabil-

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

ity with respect to the number of secondary rays correspond-
ing to the amount of reflection within a 3D scene. Indeed our
new approach gives a starting point of testing the two differ-
ent architectural as well as algorithmic parts, respectively the
two opposite rendering techniques, namely a fast CPU Ray
Tracing algorithm and the classical feed-forward-rendering
provided by OpenGL. Beside this performance test we also
recommended to test the accuracy and quality of the shadow
generation within our algorithm.

5.1. Test Scenes

We tested our framework with a scene of medium complex-
ity with about 500.000 triangles which includes reflective
surfaces as shown in Figure 5. The depth of reflection is cur-
rently limited to one and due to the current implementation
our framework provides only one directional light. To test
our framework with respect to the Shadow Generation we
tested a different scene at medium complexity as seen in a
following subsection. All tests have been rendered at a reso-
lution of 1024× 764 pixels, where the camera is positioned
in such a way that approximately all objects lie inside the
viewing frustum.

Figure 5: Medium test scene: 500.000 Triangles, containing
10% reflection, 1024×768 pixel, 8 fps.

5.2. Performance and Render-time

Indeed our approach concentrates on the idea of taking ad-
vantage of both rendering-techniques and settles a claim on
Gloabal Illumination, respectively reflection and refraction,
a Phong shading model and the generation of accurate shad-
ows. Ray Tracing as a method and solution for this claim has
a non-linear time-complexity related to scene-complexity
and in general does all computations sequentially. Therefore
a Ray Tracer cannot reach render-times like feed-forward
OpenGL rasterization of nowadays graphics cards.

The overall performance of our framework closely de-
pends on the amount of secondary rays fired by the Ray
Tracer, while the GPU will mostly remain under-worked.
As a final result Figure 6 illustrates the computation times
of each render-pass and faces GPU and CPU. As expected

the render-time is limited by the CPU which obviously is
the bottle-neck of our algorithm. Concerning scalability we
recommend to test whether this bottleneck would swap to
the GPU when increasing the number of triangles. Though
we are not able to test our framework with more than 1M
triangles until now the OpenRT Renderer confirms this as-
sumption.

Figure 6: Render-times of the five render-passes and the
read-back on testSysII: 500.000 Triangles, 1024×768 Pixel,
increasing reflection from left to right. The GPU remains
under-worked. The Ray Tracing has none-linear scaling.

5.3. Multi-threading

As described before our framework is able to distribute
the CPU part in a multi-threading manner. The number of
threads therefore was adjusted to the configuration of each
test system and accordingly to the well known overhead of
synchronization time of all concurrently running programs.

A comparison of the overall render-time, rendering our
medium test scene as shown in Figure 5, with testSysI and
testSysII gives Figure 7. As result we found that testSysII
reduces the render time by factor two as expected when run-
ning with two CPU threads instead of one. We received the

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

Figure 7: Comparison of testSysI and testSysII: overall
render-time in milliseconds, number of Threads.

best results with testSysII and four threads for the CPU Ray
Tracing pass. Indeed the hyper-threading dual-processor PC
runs at full capacity with four threads.

5.4. Usage of the SIMD Extension

As mentioned in a former section we use the CPUs SIMD
Extension for vector and matrix-arithmetics. Comparing our
math library with a non-SIMD version we have measured a
consistently at least 10 percent shorter render-time through-
out all tests. This speedup is still remarkable because in
opposite to OpenRT we do not use SIMD for ray-triangle-
intersections, but indeed this would be an improvement for a
further implementation of our framework.

5.5. Shadow Boundary Refinement

Our approach presents a hybrid method to generate precise
and smooth shadow boundaries, as achieved by a classical
ray-based shadow test in a Ray Tracer, and additionally uses
the hardware accelerated Shadow Mapping algorithm for the
Umbra and the Illuminated Parts of a 3D scene. With this
new method we can generate exact shadows with a minimum
cost in CPU time.

Figure 8 pictures our test scene rendered with the
LiSPSM-Algorithm presented in [WSP04]. The same scene
rendered with our Shadow Refinement algorithm and a con-
volution kernel of 5×5 pixels for the alpha blurring is shown
in Figure 9 comparatively. As a result of our algorithm the
shadow boundaries are smooth and accurate and the well-
known artefacts of Shadow Mapping are completely elimi-
nated by our Ray Tracing post process. Obviously the choice
of the kernel size is a trade-off between overall performance
and quality. Nevertheless artefacts with an area larger than
the blurring-kernel cannot be removed.

Figure 8: Shadow test scene, 1024×768 pixel, 500.000 Tri-
angles: shadow boundaries without CPU-refinement includ-
ing artefacts, 7 fps.

Figure 9: Shadow test scene, 1024×768 pixel, 500.000 Tri-
angles: precise shadow boundaries with CPU-refinement
and a blurring-kernel of 5×5 pixel, 6 fps.

6. Conclusion and Future Work

We presented a new approach on rendering medium to
complex scenes with regard to Global Illumination. Our
framework takes advantage of a fast Ray Tracing algorithm
located on the CPU and the programmable feed-forward
OpenGL rendering pipeline of actual GPUs. The analysis of
a 3D scene rendered by a Ray Tracer was a starting point
for our approach which leads to a new algorithm by split-
ting the overall rendering into five render-passes. We there-
fore use the GPU wherever possible and only assign our fast
CPU Ray Tracing algorithm where needed. In other words
we exploit the capabilities of the GPU most suitable our Ray
Tracer contributes in the terms of Global Illumination to a
final high quality rendered image. Using a compact and fast
kd-tree and the SIMD-Extension CPU-side our implemented

c© The Eurographics Association and Blackwell Publishing 2005.

S. Beck & A.-C. Bernstein & D. Danch & B. Fröhlich / Real Time Ray Tracing Framework

framework renders medium to high complexity scenes at
moderate frame rates, nevertheless we could not achieve in-
teractivity.

Our hybrid render technique identifies the differences be-
tween a CPU- and a GPU-based rendering algorithm and
shows how to combine them appropriate by taking the best
of each. Though the CPU bottleneck frustrates interactive
frame-rates our approach could be a starting point for fur-
ther research topics. In a future work we would like to map
more of the overall computations within our framework to
the GPU. New abstractions and appropriate algorithms in
context of Ray Tracing and Global Illumination and also
new data-structures have to be designed. Obviously actual
researches concentrate on shifting even more algorithms to
the GPU and the possibilities of multi-GPU PCs and also
clustering will encourage us to keep our results in mind.

References

[Chr05] CHRISTEN M.: Ray Tracing on GPU. Master’s
thesis, University of Applied Sciences Basel, 2005.

[CRR04] CASSAGNABERE C., ROUSSELLE F., RENAUD

C.: Path tracing using the ar350 processor. In GRAPHITE
’04: Proceedings of the 2nd international conference on
Computer graphics and interactive techniques in Aus-
tralasia and Southe East Asia (New York, NY, USA,
2004), ACM Press, pp. 23–29.

[Hai] HAINES E.: Bsp plane cost function revisited. ACM
TOG 17, 1.

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University, Prague, 2000.

[JS02] J"ORG SCHMITTLER INGO WALD P. S.: Saarcor
– a hardware architecture for ray tracing.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,
HANRAHAN P.: Ray tracing on programmable graphics
hardware. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), ACM Press,
pp. 703–712.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective
shadow maps. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 2002), ACM
Press, pp. 557–562.

[SWW∗04] SCHMITTLER J., WOOP S., WAGNER D.,
PAUL W. J., SLUSALLEK P.: Realtime ray tracing of dy-
namic scenes on an fpga chip. In HWWS ’04: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (New York, NY, USA, 2004), ACM
Press, pp. 95–106.

[Wal04] WALD I.: Realtime Raytracing and Interactive

Global Illumination. PhD thesis, Computer Graphics
Group Saarland University Saarbr"ucken, 2004.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER

W.: Light space perspective shadow maps. In Proceedings
of Eurographics Symposium on Rendering 2004 (2004).

c© The Eurographics Association and Blackwell Publishing 2005.

